《推荐系统:技术、评估及高效算法》一导读

简介: 推荐系统是为用户推荐所需物品的软件工具和技术。提供的推荐旨在通过各种决策过程来支持用户,例如,买什么物品、听什么歌或者读什么新闻。推荐系统对于在线用户处理信息过载是一个非常有价值的方法,并成为电子商务领域最强大和流行的工具。


a8dd5f918d96657c8e3b9bbf1d3bf8319644d640

前 言

推荐系统是为用户推荐所需物品的软件工具和技术。提供的推荐旨在通过各种决策过程来支持用户,例如,买什么物品、听什么歌或者读什么新闻。推荐系统对于在线用户处理信息过载是一个非常有价值的方法,并成为电子商务领域最强大和流行的工具。因此,人们提出了各种各样的推荐技术,并在过去的10年中将其中很多方法成功地运用在商务领域。
推荐系统的发展需要多学科的支持,涉及来自各个领域的专家知识,如人工智能、人机交互、信息检索、数据挖掘、数据统计、自适应用户界面、决策支持系统、市场营销或消费者行为等。本书旨在基于这种多样性,通过展示推荐系统的主要概念、理论、方法论、趋势、挑战和应用等连贯而又统一的知识体系,帮助读者从差异之中梳理出头绪。这是第一本全面阐述推荐系统的书,其中覆盖了主要技术的多个方面。本书中的丰富信息和实践内容为研究人员、学生和行业中的实践者提供了一个有关推荐系统的全面但简洁方便的参考源。本书不仅详细介绍了经典方法,而且介绍了最近引进的新方法及其扩展。本书由五部分组成:技术、推荐系统的应用和评估、推荐系统的交互、推荐系统和社区及高级算法。第一部分展示了如今构建推荐系统的最流行和最基础的技术,如协同过滤、基于内容的过滤、数据挖掘方法和基于情境感知的方法。第二部分首先介绍用来评估推荐质量的研究技术和方法;其次说明了设计推荐系统的实际方面,如设计和实现的考虑,选择更合适算法的环境指南;再次讨论了可能影响设计的相关方面;最后探讨了应用在已成型系统评估上的方法、挑战和估量。第三部分包括了探讨一系列问题的文章,这些问题包括推荐的展示、浏览、解释和视觉化,以及使得推荐过程更结构化和方便的技术等。
第四部分完全聚焦于一个全新的话题,但该话题却基于过滤推荐的主要思想,例如利用用户产生的各种类型的内容来构建具有新类型并更加可信的推荐系统。
第五部分搜集了一些关于高阶话题的文章,例如利用主动学习技术来引导新知识的学习,构建能够抵挡恶意用户攻击的健壮推荐系统的合适技术,以及结合多种用户反馈和偏好来生成更加可信的推荐系统。
我们要感谢所有为本书做出贡献的作者。感谢所有审阅人员提出的慷慨意见及建议。特别感谢Susan LagerstromFife和Springer的成员,感谢他们在写这本书过程中的合作。最后我们希望这本手册有助于这一学科的发展,为新手提供一个卓有成效的学习方案,能够激起更多专业人士有兴趣参与本书所讨论的主题,使这个具有挑战性的领域能够硕果累累,长足进展。

目 录

第1章 概述
1.1 简介
1.2 推荐系统的功能
1.3 数据和知识资源
1.4 推荐技术
1.5 应用与评价
1.6 推荐系统与人机交互
1.7 推荐系统是个交叉学科领域
1.8 出现的问题和挑战
参考文献
第一部分 基础技术
第2章 推荐系统中的数据挖掘方法
2.1 简介
2.2 数据预处理
2.3 分类
2.4 聚类分析
2.5 关联规则挖掘
2.6 总结
致谢
参考文献
第3章 基于内容的推荐系统:前沿和趋势
3.1 简介
3.2 基于内容的推荐系统的基础
3.3 基于内容的推荐系统的现状
3.4 趋势和未来研究
3.5 总结
参考文献
第4章 基于近邻推荐方法综述
4.1 简介
4.1.1 问题公式化定义
4.1.2 推荐方法概要
4.1.3 基于近邻方法的优势
4.1.4 目标和概要
4.2 基于近邻推荐
4.2.1 基于用户评分
4.2.2 基于用户分类
4.2.3 回归与分类
4.2.4 基于物品推荐
4.2.5 基于用户和基于物品推荐的对比
4.3 近邻方法的要素
4.3.1 评分标准化
4.3.2 相似度权重计算
4.3.3 近邻的选择
4.4 高级进阶技术
4.4.1 降维方法
4.4.2 基于图方法
4.5 总结
参考文献

相关文章
|
8月前
|
人工智能 自然语言处理 NoSQL
对谈Concured首席技术官:利用AI和MongoDB打造个性化内容推荐系统
内容无处不在。无论消费者寻找什么或所处任何行业,找到内容并不困难;关键在于如何找到对应的内容。
1656 0
|
存储 监控 搜索推荐
【业务架构】业务驱动的推荐系统相关技术总结
【业务架构】业务驱动的推荐系统相关技术总结
135 0
|
8月前
|
机器学习/深度学习 搜索推荐 算法
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
推荐系统离线评估方法和评估指标,以及在推荐服务器内部实现A/B测试和解决A/B测试资源紧张的方法。还介绍了如何在TensorFlow中进行模型离线评估实践。
452 0
|
2月前
|
机器学习/深度学习 搜索推荐 算法
在数字化时代,推荐系统成为互联网应用的重要组成部分,通过机器学习技术根据用户兴趣和行为提供个性化推荐,提升用户体验
在数字化时代,推荐系统成为互联网应用的重要组成部分,通过机器学习技术根据用户兴趣和行为提供个性化推荐,提升用户体验。本文探讨了推荐系统的基本原理、常用算法、实现步骤及Python应用,介绍了如何克服数据稀疏性、冷启动等问题,强调了合理选择算法和持续优化的重要性。
80 4
|
8月前
|
机器学习/深度学习 数据采集 人工智能
构建一个基于AI的推荐系统的技术探索
【5月更文挑战第23天】本文探讨了构建基于AI的推荐系统的关键技术,包括数据收集、预处理、特征工程、推荐算法(如协同过滤、内容过滤、深度学习)及结果评估。通过理解用户行为和偏好,推荐系统能提供个性化建议。实现步骤涉及确定业务需求、设计数据方案、预处理、算法选择、评估优化及系统部署。随着技术进步,未来推荐系统将更加智能。
|
3月前
|
机器学习/深度学习 人工智能 搜索推荐
用AI技术打造个性化新闻推荐系统
【10月更文挑战第7天】本文将介绍如何使用AI技术构建一个个性化的新闻推荐系统。我们将从数据收集、处理,到模型训练和优化,最后实现推荐系统的全过程进行讲解。通过这篇文章,你将了解到如何利用机器学习和深度学习技术,为用户提供精准的新闻推荐。
68 0
|
5月前
|
数据采集 机器学习/深度学习 人工智能
利用AI技术实现个性化新闻推荐系统
【8月更文挑战第31天】 本文将介绍如何利用AI技术实现一个个性化的新闻推荐系统。我们将使用Python语言和一些常用的机器学习库,如scikit-learn和pandas,来构建一个简单的推荐系统。这个系统可以根据用户的阅读历史和兴趣偏好,为他们推荐相关的新闻文章。我们将从数据预处理、特征提取、模型训练和结果评估等方面进行详细的讲解。
|
6月前
|
机器学习/深度学习 搜索推荐 算法
深度学习在推荐系统中的应用:技术解析与实践
【7月更文挑战第6天】深度学习在推荐系统中的应用为推荐算法的发展带来了新的机遇和挑战。通过深入理解深度学习的技术原理和应用场景,并结合具体的实践案例,我们可以更好地构建高效、准确的推荐系统,为用户提供更加个性化的推荐服务。
|
7月前
|
搜索推荐 算法 UED
基于Python的推荐系统算法实现与评估
本文介绍了推荐系统的基本概念和主流算法,包括基于内容的推荐、协同过滤以及混合推荐。通过Python代码示例展示了如何实现基于内容的推荐和简化版用户-用户协同过滤,并讨论了推荐系统性能评估指标,如预测精度和覆盖率。文章强调推荐系统设计的迭代优化过程,指出实际应用中需考虑数据稀疏性、冷启动等问题。【6月更文挑战第11天】
1155 3
|
7月前
|
机器学习/深度学习 人工智能 搜索推荐
构建基于AI的个性化新闻推荐系统:技术探索与实践
【6月更文挑战第5天】构建基于AI的个性化新闻推荐系统,通过数据预处理、用户画像构建、特征提取、推荐算法设计及结果评估优化,解决信息爆炸时代用户筛选新闻的难题。系统关键点包括:数据清洗、用户兴趣分析、表示学习、内容及协同过滤推荐。实践案例证明,结合深度学习的推荐系统能提升用户体验,未来系统将更智能、个性化。

热门文章

最新文章