PyTorch实现神经网络分类

简介: PyTorch实现神经网络分类

一、分类


1.1 数据


创建一些假数据来模拟真实的情况. 比如两个二次分布的数据, 不过他们的均值都不一样.

import torch
import matplotlib.pyplot as plt
# 假数据
n_data = torch.ones(100, 2)         # 数据的基本形态
x0 = torch.normal(2*n_data, 1)      # 类型0 x data (tensor), shape=(100, 2)
y0 = torch.zeros(100)               # 类型0 y data (tensor), shape=(100, )
x1 = torch.normal(-2*n_data, 1)     # 类型1 x data (tensor), shape=(100, 1)
y1 = torch.ones(100)                # 类型1 y data (tensor), shape=(100, )
# 注意 x, y 数据的数据形式是一定要像下面一样 (torch.cat 是在合并数据)
x = torch.cat((x0, x1), 0).type(torch.FloatTensor)  # FloatTensor = 32-bit floating
y = torch.cat((y0, y1), ).type(torch.LongTensor)    # LongTensor = 64-bit integer
# plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=y.data.numpy(), s=100, lw=0, cmap='RdYlGn')
# plt.show()
# 画图
plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()

1.2 建立网络


建立一个神经网络我们可以直接运用 torch 中的体系. 先定义所有的层属性(init()), 然后再一层层搭建(forward(x))层于层的关系链接.


class Net(torch.nn.Module):     # 继承 torch 的 Module
    def __init__(self, n_feature, n_hidden, n_output):
        super(Net, self).__init__()     # 继承 __init__ 功能
        self.hidden = torch.nn.Linear(n_feature, n_hidden)   # 隐藏层线性输出
        self.out = torch.nn.Linear(n_hidden, n_output)       # 输出层线性输出
    def forward(self, x):
        # 正向传播输入值, 神经网络分析出输出值
        x = F.relu(self.hidden(x))      # 激励函数(隐藏层的线性值)
        x = self.out(x)                 # 输出值, 但是这个不是预测值, 预测值还需要再另外计算
        return x
net = Net(n_feature=2, n_hidden=10, n_output=2) # 几个类别就几个 output
print(net)  # net 的结构

输出结果:

Net (
(hidden): Linear (2 -> 10)
(out): Linear (10 -> 2)
)

1.3 训练

# optimizer 是训练的工具
optimizer = torch.optim.SGD(net.parameters(), lr=0.02)  # 传入 net 的所有参数, 学习率
# 算误差的时候, 注意真实值!不是! one-hot 形式的, 而是1D Tensor, (batch,)
# 但是预测值是2D tensor (batch, n_classes)
loss_func = torch.nn.CrossEntropyLoss()
for t in range(100):
    out = net(x)     # 喂给 net 训练数据 x, 输出分析值
    loss = loss_func(out, y)     # 计算两者的误差
    optimizer.zero_grad()   # 清空上一步的残余更新参数值
    loss.backward()         # 误差反向传播, 计算参数更新值
    optimizer.step()        # 将参数更新值施加到 net 的 parameters 上

1.4 可视化训练

for t in range(100):
    ...
    loss.backward()
    optimizer.step()
    # 接着上面来
    if t % 2 == 0:
        plt.cla()
        # 过了一道 softmax 的激励函数后的最大概率才是预测值
        prediction = torch.max(F.softmax(out), 1)[1]
        pred_y = prediction.data.numpy().squeeze()
        target_y = y.data.numpy()
        plt.scatter(x.data.numpy()[:, 0], x.data.numpy()[:, 1], c=pred_y, s=100, lw=0, cmap='RdYlGn')
        accuracy = sum(pred_y == target_y)/200.  # 预测中有多少和真实值一样
        plt.text(1.5, -4, 'Accuracy=%.2f' % accuracy, fontdict={'size': 20, 'color':  'red'})
        plt.pause(0.1)
plt.ioff()  # 停止画图
plt.show()

20201125202324392.png



二、pytorch快速搭建神经网络


Torch 中提供了很多方便的途径, 同样是神经网络, 能快则快

import torch
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
import matplotlib.pyplot as plt
# 数据维度为1,y为2次方+噪声
n_data = torch.ones(100, 2)
x0 =torch.normal(2*n_data,1)
y0 = torch.zeros(100)  # 标签为0
x1 = torch.normal(-2*n_data,1)
y1 = torch.ones(100)  # 标签为1
x = torch.cat((x0, x1),0).type(torch.FloatTensor)
y = torch.cat((y0, y1),).type(torch.LongTensor)
# 画散点图
x,y = Variable(x),Variable(y)
plt.scatter(x.data.numpy()[:,0], x.data.numpy()[:,1],c=np.squeeze(y.data.numpy()), s=200, lw=0, cmap='RdYlGn')
plt.show()
# 搭建神经网络
class Net(torch.nn.Module):
    def __init__(self,n_feature,n_hidden,n_output):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(n_feature,n_hidden)  #一个隐藏层
        self.predict = torch.nn.Linear(n_hidden,n_output)  #预测神经元层,预测一个Y
    def forward(self,x):
        x = torch.relu(self.hidden(x))
        x = self.predict(x)
        return x
net1 = Net(2,10,2)  # 神经网络的结构2-10-2
net2 = torch.nn.Sequential(
    torch.nn.Linear(2,10), # 输入-隐藏
    torch.nn.ReLU(), # 激励函数
    torch.nn.Linear(10,2) # 隐藏层-输出层
)
print(net1)  # 打印神经网络的信息
print(net2)  # 打印神经网络的信息

我们会发现 net2 多显示了一些内容, 这是为什么呢? 原来他把激励函数也一同纳入进去了, 但是 net1 中, 激励函数实际上是在 forward() 功能中才被调用的. 这也就说明了, 相比 net2, net1 的好处就是, 你可以根据你的个人需要更加个性化你自己的前向传播过程, 比如(RNN). 不过如果你不需要七七八八的过程, 相信 net2 这种形式更适合你.


三、保存网络


3.1 建造数据, 搭建网络

import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
torch.manual_seed(1)
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)  # 一维变二维
y = x.pow(2) + 0.2*torch.rand(x.size())
x, y = Variable(x, requires_grad=False), Variable(y, requires_grad=False)  # 当requires_grade为False时,不用求梯度
def save():
   net1 = torch.nn.Sequential(
       torch.nn.Linear(1, 10),
       torch.nn.ReLU(),
       torch.nn.Linear(10, 1),
  )
   optimizer = torch.optim.SGD(net1.parameters(), lr=0.05)
   loss_function = torch.nn.MSELoss()
   for t in range(1000):  # 训练的步数
       prediction = net1(x)
       loss = loss_function(prediction, y)  # 预测值在前真实值在后
       optimizer.zero_grad()
       loss.backward()
       optimizer.step()

3.2 保存网络


接下来我们有两种途径来保存

torch.save(net1, 'net.pkl')  # 保存整个网络
torch.save(net1.state_dict(), 'net_params.pkl')   # 只保存网络中的参数 (速度快, 占内存少)

3.3 提取网络


这种方式将会提取整个神经网络, 网络大的时候可能会比较慢.

def restore_net():
    # restore entire net1 to net2
    net2 = torch.load('net.pkl')
    prediction = net2(x)

提取网络参数:

def restore_params():
    # 新建 net3
    net3 = torch.nn.Sequential(
        torch.nn.Linear(1, 10),
        torch.nn.ReLU(),
        torch.nn.Linear(10, 1)
    )
    # 将保存的参数复制到 net3
    net3.load_state_dict(torch.load('net_params.pkl'))
    prediction = net3(x)

3.4 结果

# 保存 net1 (1. 整个网络, 2. 只有参数)
save()
# 提取整个网络
restore_net()
# 提取网络参数, 复制到新网络
restore_params()

20201125202816281.png


四、Optimizer优化器


4.1 数据


import torch
import torch.utils.data as Data
import torch.nn.functional as F
import matplotlib.pyplot as plt
torch.manual_seed(1)    # reproducible
LR = 0.01
BATCH_SIZE = 32
EPOCH = 12
# fake dataset
x = torch.unsqueeze(torch.linspace(-1, 1, 1000), dim=1)
y = x.pow(2) + 0.1*torch.normal(torch.zeros(*x.size()))
# plot dataset
plt.scatter(x.numpy(), y.numpy())
plt.show()
# 使用上节内容提到的 data loader
torch_dataset = Data.TensorDataset(x, y)
loader = Data.DataLoader(dataset=torch_dataset, batch_size=BATCH_SIZE, shuffle=True, num_workers=2,)

20201125203006233.png

4.2 每个优化器优化一个神经网络


为了对比每一种优化器, 我们给他们各自创建一个神经网络, 但这个神经网络都来自同一个 Net 形式.

# 默认的 network 形式
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.hidden = torch.nn.Linear(1, 20)   # hidden layer
        self.predict = torch.nn.Linear(20, 1)   # output layer
    def forward(self, x):
        x = F.relu(self.hidden(x))      # activation function for hidden layer
        x = self.predict(x)             # linear output
        return x
# 为每个优化器创建一个 net
net_SGD         = Net()
net_Momentum    = Net()
net_RMSprop     = Net()
net_Adam        = Net()
nets = [net_SGD, net_Momentum, net_RMSprop, net_Adam]

4.3 优化器 Optimizer


接下来在创建不同的优化器, 用来训练不同的网络. 并创建一个 loss_func 用来计算误差. 我们用几种常见的优化器, SGD, Momentum, RMSprop, Adam.

# different optimizers
opt_SGD         = torch.optim.SGD(net_SGD.parameters(), lr=LR)
opt_Momentum    = torch.optim.SGD(net_Momentum.parameters(), lr=LR, momentum=0.8)
opt_RMSprop     = torch.optim.RMSprop(net_RMSprop.parameters(), lr=LR, alpha=0.9)
opt_Adam        = torch.optim.Adam(net_Adam.parameters(), lr=LR, betas=(0.9, 0.99))
optimizers = [opt_SGD, opt_Momentum, opt_RMSprop, opt_Adam]
loss_func = torch.nn.MSELoss()
losses_his = [[], [], [], []]   # 记录 training 时不同神经网络的 loss

4.4 作图

for epoch in range(EPOCH):
    print('Epoch: ', epoch)
    for step, (b_x, b_y) in enumerate(loader):
        # 对每个优化器, 优化属于他的神经网络
        for net, opt, l_his in zip(nets, optimizers, losses_his):
            output = net(b_x)              # get output for every net
            loss = loss_func(output, b_y)  # compute loss for every net
            opt.zero_grad()                # clear gradients for next train
            loss.backward()                # backpropagation, compute gradients
            opt.step()                     # apply gradients
            l_his.append(loss.data.numpy())     # loss recoder

20201125202935238.png


SGD 是最普通的优化器, 也可以说没有加速效果, 而 Momentum 是 SGD 的改良版, 它加入了动量原则. 后面的 RMSprop 又是 Momentum 的升级版. 而 Adam 又是 RMSprop 的升级版. 不过从这个结果中我们看到, Adam 的效果似乎比 RMSprop 要差一点. 所以说并不是越先进的优化器, 结果越佳. 我们在自己的试验中可以尝试不同的优化器, 找到那个最适合你数据/网络的优化器.

目录
相关文章
|
22天前
|
网络协议
计算机网络的分类
【10月更文挑战第11天】 计算机网络可按覆盖范围(局域网、城域网、广域网)、传输技术(有线、无线)、拓扑结构(星型、总线型、环型、网状型)、使用者(公用、专用)、交换方式(电路交换、分组交换)和服务类型(面向连接、无连接)等多种方式进行分类,每种分类方式揭示了网络的不同特性和应用场景。
|
20天前
|
机器学习/深度学习 Serverless 索引
分类网络中one-hot的作用
在分类任务中,使用神经网络时,通常需要将类别标签转换为一种合适的输入格式。这时候,one-hot编码(one-hot encoding)是一种常见且有效的方法。one-hot编码将类别标签表示为向量形式,其中只有一个元素为1,其他元素为0。
27 3
|
2月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
87 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
1月前
|
机器学习/深度学习 PyTorch 算法框架/工具
深度学习入门案例:运用神经网络实现价格分类
深度学习入门案例:运用神经网络实现价格分类
|
21天前
|
存储 分布式计算 负载均衡
|
21天前
|
安全 区块链 数据库
|
2月前
|
机器学习/深度学习
小土堆-pytorch-神经网络-损失函数与反向传播_笔记
在使用损失函数时,关键在于匹配输入和输出形状。例如,在L1Loss中,输入形状中的N代表批量大小。以下是具体示例:对于相同形状的输入和目标张量,L1Loss默认计算差值并求平均;此外,均方误差(MSE)也是常用损失函数。实战中,损失函数用于计算模型输出与真实标签间的差距,并通过反向传播更新模型参数。
|
2月前
|
机器学习/深度学习 数据采集 数据可视化
深度学习实践:构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行分类
本文详细介绍如何使用PyTorch构建并训练卷积神经网络(CNN)对CIFAR-10数据集进行图像分类。从数据预处理、模型定义到训练过程及结果可视化,文章全面展示了深度学习项目的全流程。通过实际操作,读者可以深入了解CNN在图像分类任务中的应用,并掌握PyTorch的基本使用方法。希望本文为您的深度学习项目提供有价值的参考与启示。
|
26天前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
118 2
|
28天前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
50 8
利用 PyTorch Lightning 搭建一个文本分类模型