通过本篇你将了解到:
1、PriorityQueue是什么?
2、PriorityQueue的内部结构是什么?
3、二叉堆、大顶堆、小顶堆分别是什么?有什么特性?
4、小顶堆是如何实现的,如何用数组表示?
5、小顶堆的删除、插入操作是如何进行的?
6、PriorityQueue的源码解析。
7、PriorityQueue的应用场景。
一、PriorityQueue简介
PriorityQueue也是Queue的一个继承者,相比于一般的列表,它的特点便如它的名字一样,出队的时候可以按照优先级进行出队,所以不像LinkedList那样只能按照插入的顺序出队,PriorityQueue是可以根据给定的优先级顺序进行出队的。这里说的给定优先级顺序既可以是内部比较器,也可以是外部比较器。PriorityQueue内部是根据小顶堆的结构进行存储的,所谓小顶堆的意思,便是最小的元素总是在最上面,每次出队总是将堆顶元素移除,这样便能让出队变得有序,至于什么是小顶堆,后面会通过本篇你将了解到:
1、PriorityQueue是什么?
2、PriorityQueue的内部结构是什么?
3、二叉堆、大顶堆、小顶堆分别是什么?有什么特性?
4、小顶堆是如何实现的,如何用数组表示?
5、小顶堆的删除、插入操作是如何进行的?
6、PriorityQueue的源码解析。
7、PriorityQueue的应用场景。
一、PriorityQueue简介
PriorityQueue也是Queue的一个继承者,相比于一般的列表,它的特点便如它的名字一样,出队的时候可以按照优先级进行出队,所以不像LinkedList那样只能按照插入的顺序出队,PriorityQueue是可以根据给定的优先级顺序进行出队的。这里说的给定优先级顺序既可以是内部比较器,也可以是外部比较器。PriorityQueue内部是根据小顶堆的结构进行存储的,所谓小顶堆的意思,便是最小的元素总是在最上面,每次出队总是将堆顶元素移除,这样便能让出队变得有序,至于什么是小顶堆,后面会有详细介绍
比如说,比较常见的场景就是任务队列,队列动态插入,后面的任务优先级高的需要被先执行,那么使用优先级队列就可以比较好的实现这样的需求。下面我们模拟一下这个场景:
public class PriorityQueueTest { public static void main(String[] args){ // 传入外部比较器, //PriorityQueue<Task> taskQueue = new PriorityQueue<>(Comparator.comparingInt(Task::getPriority)); //PriorityQueue<Task> taskQueue = new PriorityQueue<>((t1, t2) -> t1.getPriority() - t2.getPriority()); PriorityQueue<Task> taskQueue = new PriorityQueue<>(new Comparator<Task>() { @Override public int compare(Task t1, Task t2) { return t1.getPriority() - t2.getPriority(); } }); // 添加六个任务 taskQueue.add(new Task(1, "learn java")); taskQueue.add(new Task(3, "learn c++")); taskQueue.add(new Task(4, "learn c#")); taskQueue.add(new Task(2, "learn python")); taskQueue.add(new Task(2, "learn php")); taskQueue.add(new Task(5, "learn js")); // 出队 while (!taskQueue.isEmpty()){ System.out.println(taskQueue.poll()); } } } class Task{ /** * 任务优先级 */ private int priority; /** * 任务名称 */ private String taskName; public Task() { } public Task(int priority, String taskName) { this.priority = priority; this.taskName = taskName; } public int getPriority() { return priority; } public void setPriority(int priority) { this.priority = priority; } public String getTaskName() { return taskName; } public void setTaskName(String taskName) { this.taskName = taskName; } @Override public String toString() { return "Task{" + "priority=" + priority + ", taskName='" + taskName + '\'' + '}'; } }
输出如下:
Task{priority=1, taskName='learn java'} Task{priority=2, taskName='learn python'} Task{priority=2, taskName='learn php'} Task{priority=3, taskName='learn c++'} Task{priority=4, taskName='learn c#'} Task{priority=5, taskName='learn js'}
二、PriorityQueue的内部结构
上面已经提到了,PriorityQueue的内部结构其实是按照小顶堆的结构进行存储的,那么什么是小顶堆呢?说到小顶堆,还是先从堆开始介绍吧。
堆和栈一样是一种很基础的数据结构,在维基百科中的介绍如下:
堆(英语:Heap)是计算机科学中一类特殊的数据结构的统称。堆通常是一个可以被看做一棵树的数组对象。在队列中,调度程序反复提取队列中第一个作业并运行,因为实际情况中某些时间较短的任务将等待很长时间才能结束,或者某些不短小,但具有重要性的作业,同样应当具有优先权。堆即为解决此类问题设计的一种数据结构。
用图来表示的话就像这样:
说完了堆,再来聊聊它的进化版——二叉堆,同样引用维基百科中的介绍:
二叉堆(英语:binary heap)是一种特殊的堆,二叉堆是完全二叉树或者是近似完全二叉树。二叉堆满足堆特性:父节点的键值总是保持固定的序关系于任何一个子节点的键值,且每个节点的左子树和右子树都是一个二叉堆。
当父节点的键值总是大于或等于任何一个子节点的键值时为最大堆。 当父节点的键值总是小于或等于任何一个子节点的键值时为最小堆。
其中,最大堆也叫做大顶堆或者大根堆,最小堆也叫做小顶堆或者小根堆。上面的图一其实就是一个大顶堆,而图二则是小顶堆。PriorityQueue是通过数组表示的小顶堆实现的,既然如此,PriorityQueue的排序特性自然与小顶堆的特性一致,下面便介绍小顶堆如何使用数组进行表示以及插入删除时的调整。
下面是一个由10,16,20,22,18,25,26,30,24,23构成的小顶堆:
将其从第一个元素开始依次从上到下,从左到右给每个元素添加一个序号,从0开始,这样就得到了相应元素在数组中的位置,而且这个序号是很有规则的,第k个元素的左孩子的序号为2k+1,右孩子的序号为2k+2,这样就很容易根据序号直接算出对应孩子的位置,时间复杂度为o(1)。这也就是为什么可以用数组来存储堆结构的原因了。
再来看看小顶堆是如何插入元素的,假设我们插入一个元素15:
插入元素的调整其实很简单,就是先插入到最后,然后再依次与其父节点进行比较,如果小于其父节点,则互换,直到不需要调整或者父节点为null为止。
那再来看看移除元素:
嗯,过程其实也很简单,先用最后的元素当替补,然后再从上往下进行调整。
三、PriorityQueue源码解析
小顶堆已经介绍完了,那PriorityQueue就没什么内容可讲
下来让我们一起来看看源码中是如何实现的。
先来继承结构:
PriorityQueue继承自AbstractQueue,像这样的Abstract开头的抽象类,想必应该不陌生了,就是继承自指定接口然后进行了一些默认实现。
来看看PriorityQueue的内部成员:
// 默认初始化容量 private static final int DEFAULT_INITIAL_CAPACITY = 11; /** * 优先级队列是使用平衡二叉堆表示的: 节点queue[n]的两个孩子分别为 * queue[2*n+1] 和 queue[2*(n+1)]. 队列的优先级是由比较器或者 * 元素的自然排序决定的, 对于堆中的任意元素n,其后代d满足:n<=d * 如果堆是非空的,则堆中最小值为queue[0]。 */ transient Object[] queue; /** * 队列中元素个数 */ private int size = 0; /** * 比较器 */ private final Comparator<? super E> comparator; /** * 修改次数 */ transient int modCount = 0;
可以看到内部使用的是一个Object数组进行元素的存储,并对该数组进行了详细的注释,所以不管是根据子节点找父节点,还是根据父节点找子节点都肥肠的方便。img
再来看看它的构造函数,有点多,一共有六个构造函数:
/** * 使用默认的容量(11)来构造一个空的优先级队列,使用元素的自然顺序进行排序(此时元素必须实现comparable接口) */ public PriorityQueue() { this(DEFAULT_INITIAL_CAPACITY, null); } /** * 使用指定容量来构造一个空的优先级队列,使用元素的自然顺序进行排序(此时元素必须实现comparable接口) * 但如果指定的容量小于1则会抛出异常 */ public PriorityQueue(int initialCapacity) { this(initialCapacity, null); } /** * 使用默认的容量(11)构造一个优先级队列,使用指定的比较器进行排序 */ public PriorityQueue(Comparator<? super E> comparator) { this(DEFAULT_INITIAL_CAPACITY, comparator); } /** * 使用指定容量创建一个优先级队列,并使用指定比较器进行排序。 * 但如果指定的容量小于1则会抛出异常 */ public PriorityQueue(int initialCapacity, Comparator<? super E> comparator) { if (initialCapacity < 1) throw new IllegalArgumentException(); this.queue = new Object[initialCapacity]; this.comparator = comparator; } /** * 使用指定集合的所有元素构造一个优先级队列, * 如果该集合为SortedSet或者PriorityQueue类型,则会使用相同的顺序进行排序, * 否则,将使用元素的自然排序(此时元素必须实现comparable接口),否则会抛出异常 * 并且集合中不能有null元素,否则会抛出异常 */ @SuppressWarnings("unchecked") public PriorityQueue(Collection<? extends E> c) { if (c instanceof SortedSet<?>) { SortedSet<? extends E> ss = (SortedSet<? extends E>) c; this.comparator = (Comparator<? super E>) ss.comparator(); initElementsFromCollection(ss); } else if (c instanceof PriorityQueue<?>) { PriorityQueue<? extends E> pq = (PriorityQueue<? extends E>) c; this.comparator = (Comparator<? super E>) pq.comparator(); initFromPriorityQueue(pq); } else { this.comparator = null; initFromCollection(c); } } /** * 使用指定的优先级队列中所有元素来构造一个新的优先级队列. 将使用原有顺序进行排序。 */ @SuppressWarnings("unchecked") public PriorityQueue(PriorityQueue<? extends E> c) { this.comparator = (Comparator<? super E>) c.comparator(); initFromPriorityQueue(c); } /** * 根据指定的有序集合创建一个优先级队列,将使用原有顺序进行排序 */ @SuppressWarnings("unchecked") public PriorityQueue(SortedSet<? extends E> c) { this.comparator = (Comparator<? super E>) c.comparator(); initElementsFromCollection(c); }
从集合中构造优先级队列的时候,调用了几个初始化函数
private void initFromPriorityQueue(PriorityQueue<? extends E> c) { if (c.getClass() == PriorityQueue.class) { this.queue = c.toArray(); this.size = c.size(); } else { initFromCollection(c); } } private void initElementsFromCollection(Collection<? extends E> c) { Object[] a = c.toArray(); // If c.toArray incorrectly doesn't return Object[], copy it. if (a.getClass() != Object[].class) a = Arrays.copyOf(a, a.length, Object[].class); int len = a.length; if (len == 1 || this.comparator != null) for (int i = 0; i < len; i++) if (a[i] == null) throw new NullPointerException(); this.queue = a; this.size = a.length; } private void initFromCollection(Collection<? extends E> c) { initElementsFromCollection(c); heapify(); }
initFromPriorityQueue即从另外一个优先级队列构造一个新的优先级队列,此时内部的数组元素不需要进行调整,只需要将原数组元素都复制过来即可。但是从其他非PriorityQueue的集合中构造优先级队列时,需要先将元素复制过来后再进行调整,此时调用的是heapify方法:
[](javascript:void(0)?
private void heapify() { // 从最后一个非叶子节点开始从下往上调整 for (int i = (size >>> 1) - 1; i >= 0; i--) siftDown(i, (E) queue[i]); } // 划重点了,这个函数即对应上面的元素删除时从上往下调整的步骤 private void siftDown(int k, E x) { if (comparator != null) // 如果比较器不为null,则使用比较器进行比较 siftDownUsingComparator(k, x); else // 否则使用元素的compareTo方法进行比较 siftDownComparable(k, x); } private void siftDownUsingComparator(int k, E x) { // 使用half记录队列size的一半,如果比half小的话,说明不是叶子节点 // 因为最后一个节点的序号为size - 1,其父节点的序号为(size - 2) / 2或者(size - 3 ) / 2 // 所以half所在位置刚好是第一个叶子节点 int half = size >>> 1; while (k < half) { // 如果不是叶子节点,找出其孩子中较小的那个并用其替换 int child = (k << 1) + 1; Object c = queue[child]; int right = child + 1; if (right < size && comparator.compare((E) c, (E) queue[right]) > 0) c = queue[child = right]; if (comparator.compare(x, (E) c) <= 0) break; // 用c替换 queue[k] = c; k = child; } // queue[k] = x; } // 同上,只是比较的时候使用的是元素的compareTo方法 private void siftDownComparable(int k, E x) { Comparable<? super E> key = (Comparable<? super E>)x; int half = size >>> 1; // 如果是非叶子节点则继续循环 while (k < half) { int child = (k << 1) + 1; Object c = queue[child]; int right = child + 1; if (right < size && ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0) c = queue[child = right]; if (key.compareTo((E) c) <= 0) break; queue[k] = c; k = child; } queue[k] = key; }
这里可能一眼看过去有点难以理解,嗯,那就多看两眼吧。
siftDown方法是这里面比较重要的方法之一,有两个参数,一个是序号k,另一个是元素x,这个方法的作用,便是把x从k开始往下调整,使得在节点k在其子树的每相邻层中,父节点都小于其子节点。所以heapify的作用就比较明显了,从最后一个非叶子节点开始,从下往上依次调整其子树,使得最终得到的树里,根节点是最小的。这里要先理解一下为什么heapify中i的初始值要设置为(size >>> 1) - 1。因为这是最后一个非叶子节点的位置,不信的话可以随便画几个图验证一下,至于在siftDownUsingComparator方法中,int half = size >>> 1;这里half则是第一个叶子节点的位置,小于这个序号的节点都是非叶子节点,这里也可以画图验证,当然,注释中我已经做了解释。
说了这么多,也许还是不太明白,以集合{14,7,12,6,9,4,17,23,10,15,3}为例画个图吧:
嗯,这样最小的元素就被顶上去了,有没有觉得有点像冒泡排序,嗯,确实有点像。img
siftDown说完了,再来看一眼siftUp吧,这里操作是十分类似的。
private void siftUp(int k, E x) { if (comparator != null) siftUpUsingComparator(k, x); else siftUpComparable(k, x); } @SuppressWarnings("unchecked") private void siftUpComparable(int k, E x) { Comparable<? super E> key = (Comparable<? super E>) x; while (k > 0) { int parent = (k - 1) >>> 1; Object e = queue[parent]; if (key.compareTo((E) e) >= 0) break; queue[k] = e; k = parent; } queue[k] = key; } @SuppressWarnings("unchecked") private void siftUpUsingComparator(int k, E x) { while (k > 0) { int parent = (k - 1) >>> 1; Object e = queue[parent]; if (comparator.compare(x, (E) e) >= 0) break; queue[k] = e; k = parent; } queue[k] = x; }
嗯,相信如果理解了siftDown的话,这里应该就不难理解了吧,如果还有疑问,欢迎留言。img
再来看看几个常用的方法:
public boolean add(E e) { return offer(e); } public boolean offer(E e) { if (e == null) throw new NullPointerException(); modCount++; int i = size; if (i >= queue.length) grow(i + 1); size = i + 1; if (i == 0) queue[0] = e; else siftUp(i, e); return true; } // 扩容函数 private void grow(int minCapacity) { int oldCapacity = queue.length; // 如果当前容量比较小(小于64)的话进行双倍扩容,否则扩容50% int newCapacity = oldCapacity + ((oldCapacity < 64) ? (oldCapacity + 2) : (oldCapacity >> 1)); // 如果发现扩容后溢出了,则进行调整 if (newCapacity - MAX_ARRAY_SIZE > 0) newCapacity = hugeCapacity(minCapacity); queue = Arrays.copyOf(queue, newCapacity); } private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; } public boolean contains(Object o) { return indexOf(o) != -1; } private int indexOf(Object o) { if (o != null) { // 查找时需要进行全局遍历,比搜索二叉树的查找效率要低 for (int i = 0; i < size; i++) if (o.equals(queue[i])) return i; } return -1; } public E poll() { if (size == 0) return null; int s = --size; modCount++; E result = (E) queue[0]; E x = (E) queue[s]; queue[s] = null; if (s != 0) siftDown(0, x); return result; }
这里对照一下最开始说的小顶堆的插入和移除就能比较好的理解了。
最后源码中还有一个remove方法,需要稍微说明一下:
// 这里不是移除堆顶元素,而是移除指定元素 public boolean remove(Object o) { // 先找到该元素的位置 int i = indexOf(o); if (i == -1) return false; else { removeAt(i); return true; } } // 移除指定序号的元素 private E removeAt(int i) { // assert i >= 0 && i < size; modCount++; // s为最后一个元素的序号 int s = --size; if (s == i) queue[i] = null; else { // moved记录最后一个元素的值 E moved = (E) queue[s]; queue[s] = null; // 用最后一个元素代替要移除的元素,并向下进行调整 siftDown(i, moved); // 如果向下调整后发现moved还在该位置,则再向上进行调整 if (queue[i] == moved) { siftUp(i, moved); if (queue[i] != moved) return moved; } } return null; }
当移除的不是堆顶元素的时候,同样先用最后一个元素代替,然后先从被移除的位置开始向下调整,如果发现没有改动,则再向上调整。
四、PriorityQueue的应用场景
最后,来聊聊PriorityQueue的应用场景,由于内部是用数组实现的小顶堆,所以堆适用的场景它都适用,比如典型的从n个元素中取出最小(最大)的前k个,这样的场景适用PriorityQueue就能以比较小的空间代价和还算ok的时间代价进行实现,另外,优先级队列适用场景的特点便是需要动态插入元素,并且元素有优先级,需要根据一定的规则进行优先级排序。
下面以从10000个整数中取出最大的10个整数为例进行介绍。
public class Test { public static void main(String[] args){ ArrayList<Integer> integers = new ArrayList<>(10000); Random random = new Random(); for (int i = 0; i < 10000; i++) { Integer integer = random.nextInt(); if (!integers.contains(integer)) integers.add(integer); } Integer[] largest = getLargest10(integers); for (Integer i : largest){ System.out.print(i + " "); } System.out.println(); // 验证一下是否是最大的前10个 integers.sort(Comparator.comparingInt(Integer::intValue)); ArrayList<Integer> largest2 = new ArrayList<>(10); for (int i = integers.size() - 1; i >= integers.size() - 10; i--){ largest2.add(integers.get(i)); } // 在largest数组中查找 System.out.println(Arrays.asList(largest).containsAll(largest2)); } public static Integer[] getLargest10(ArrayList<Integer> integers){ PriorityQueue<Integer> queue = new PriorityQueue<>(10); for (Integer integer : integers){ queue.add(integer); if (queue.size() > 10){ queue.poll(); } } return queue.toArray(new Integer[10]); } }
输出如下,由于是取的随机数,所以每个人的输出都会不一样
2143974860 2143998490 2144350843 2145111627 2144739333 2145674658 2144667271 2145543903 2147209906 2145466260 true
最后,我们来回答一下开头的问题:
1、PriorityQueue是什么?PriorityQueue是优先级队列,取出元素时会根据元素的优先级进行排序。
2、PriorityQueue的内部结构是什么?PriorityQueue内部是一个用数组实现的小顶堆。
3、二叉堆、大顶堆、小顶堆分别是什么?有什么特性?二叉堆是完全二叉树或者近完全二叉树,大顶堆即所有父节点大于子节点,小顶堆即所有父节点小于子节点。
4、小顶堆是如何实现的,如何用数组表示?小顶堆是用二叉树实现的,用数组表示时,父节点n的左孩子为2n+1,右孩子的序号为2n+2。
5、小顶堆的删除、插入操作是如何进行的?小顶堆删除堆顶元素后用最后一个元素替补,然后从上往下调整,插入一个元素时,先放到最后的位置,然后再从下往上调整。
6、PriorityQueue的源码解析。如上。
7、PriorityQueue的应用场景。适用于需要动态插入元素,且元素有优先级顺序的场景。
到此,本篇圆满结束。如果觉得还不错的话,记得动动小手点个赞,也欢迎关注博主,你们的支持是我写出更好博客的动力。
/