【Redis 5种数据类型、RDB/AOF、集群、哨兵、缓存穿透、击穿和雪崩】进阶(下)

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云数据库 Tair(兼容Redis),内存型 2GB
简介: 【Redis 5种数据类型、RDB/AOF、集群、哨兵、缓存穿透、击穿和雪崩】进阶(下)

七、Springboot整合【spring-data】


7.1 添加依赖


20200803095247427.png


说明:springboot2.x之后,jedis被替换成了lettuce


**jedis:**采用的是直连,多个线程操作是不安全的,如果避免的话,需要使用jedis pool连接池。

**lettuce:**采用netty,实例可以在多个线程中共享,不存在线程不安全的情况。


7.2 添加yaml


spring.redis.host=127.0.0.1

spring.redis.port=6379


7.3 测试

@Autowired
private RedisTemplate redisTemplate;
@Test
void testRedis(){
  // 获取连接对象[可不]
  // RedisConnection conn = redisTemplate.getConnectionFactory().getConnection();
  // conn.flushDb();
  redisTemplate.opsForValue();
  redisTemplate.opsForList();
  redisTemplate.opsForSet();
  redisTemplate.opsForHash();
  redisTemplate.opsForZSet();
  redisTemplate.opsForGeo();
  redisTemplate.opsForHyperLogLog();
} 


7.4 自定义RedisTemplate【开发】 乱码问题


默认的序列化方式为JDK的:

20200803101239323.png

解决办法:

@Configuration
public class RedisConfig {
  @Bean
  public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory connectionFactory){
    RedisTemplate<String, Object> redisTemplate = new RedisTemplate<String, Object>();
    redisTemplate.setConnectionFactory(connectionFactory);
    // 解决乱码 实现序列化
    Jackson2JsonRedisSerializer j2r = new Jackson2JsonRedisSerializer<>(Object);
    jedisTemplate.setKeySerializer(j2r);
    return redisTemplate;
  }
  @Bean
  public RedisConnectionFactory connectionFactory(JedisPoolConfig poolConfig){
    JedisConnectionFactory jedisConnectionFactory = new JedisConnectionFactory(poolConfig);
    jedisConnectionFactory.setHostName("localhost");
    jedisConnectionFactory.setPort(6379);
    return jedisConnectionFactory;
  }
  @Bean
  public JedisPoolConfig poolConfig(){
    JedisPoolConfig jedisPoolConfig = new JedisPoolConfig();
    jedisPoolConfig.setMaxIdle(20);
    jedisPoolConfig.setMaxTotal(200);
    jedisPoolConfig.setMaxWaitMillis(2000);
    jedisPoolConfig.setTestOnBorrow(true);
    jedisPoolConfig.setTestOnCreate(true);
    return jedisPoolConfig;
  }
}

7.5 RedisUtil工具类


// 在我们真实的分发中,或者你们在公司,一般都可以看到一个公司自己封装RedisUtil


package com.kuang.utils;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import org.springframework.util.CollectionUtils;
import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;
@Component
public final class RedisUtil {
    @Autowired
    private RedisTemplate<String, Object> redisTemplate;
    // =============================common============================
    /**
     * 指定缓存失效时间
     * @param key  键
     * @param time 时间(秒)
     */
    public boolean expire(String key, long time) {
        try {
            if (time > 0) {
                redisTemplate.expire(key, time, TimeUnit.SECONDS);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 根据key 获取过期时间
     * @param key 键 不能为null
     * @return 时间(秒) 返回0代表为永久有效
     */
    public long getExpire(String key) {
        return redisTemplate.getExpire(key, TimeUnit.SECONDS);
    }
    /**
     * 判断key是否存在
     * @param key 键
     * @return true 存在 false不存在
     */
    public boolean hasKey(String key) {
        try {
            return redisTemplate.hasKey(key);
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 删除缓存
     * @param key 可以传一个值 或多个
     */
    @SuppressWarnings("unchecked")
    public void del(String... key) {
        if (key != null && key.length > 0) {
            if (key.length == 1) {
                redisTemplate.delete(key[0]);
            } else {
                redisTemplate.delete(CollectionUtils.arrayToList(key));
            }
        }
    }
    // ============================String=============================
    /**
     * 普通缓存获取
     * @param key 键
     * @return 值
     */
    public Object get(String key) {
        return key == null ? null : redisTemplate.opsForValue().get(key);
    }
    /**
     * 普通缓存放入
     * @param key   键
     * @param value 值
     * @return true成功 false失败
     */
    public boolean set(String key, Object value) {
        try {
            redisTemplate.opsForValue().set(key, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 普通缓存放入并设置时间
     * @param key   键
     * @param value 值
     * @param time  时间(秒) time要大于0 如果time小于等于0 将设置无限期
     * @return true成功 false 失败
     */
    public boolean set(String key, Object value, long time) {
        try {
            if (time > 0) {
                redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS);
            } else {
                set(key, value);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 递增
     * @param key   键
     * @param delta 要增加几(大于0)
     */
    public long incr(String key, long delta) {
        if (delta < 0) {
            throw new RuntimeException("递增因子必须大于0");
        }
        return redisTemplate.opsForValue().increment(key, delta);
    }
    /**
     * 递减
     * @param key   键
     * @param delta 要减少几(小于0)
     */
    public long decr(String key, long delta) {
        if (delta < 0) {
            throw new RuntimeException("递减因子必须大于0");
        }
        return redisTemplate.opsForValue().increment(key, -delta);
    }
    // ================================Map=================================
    /**
     * HashGet
     * @param key  键 不能为null
     * @param item 项 不能为null
     */
    public Object hget(String key, String item) {
        return redisTemplate.opsForHash().get(key, item);
    }
    /**
     * 获取hashKey对应的所有键值
     * @param key 键
     * @return 对应的多个键值
     */
    public Map<Object, Object> hmget(String key) {
        return redisTemplate.opsForHash().entries(key);
    }
    /**
     * HashSet
     * @param key 键
     * @param map 对应多个键值
     */
    public boolean hmset(String key, Map<String, Object> map) {
        try {
            redisTemplate.opsForHash().putAll(key, map);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * HashSet 并设置时间
     * @param key  键
     * @param map  对应多个键值
     * @param time 时间(秒)
     * @return true成功 false失败
     */
    public boolean hmset(String key, Map<String, Object> map, long time) {
        try {
            redisTemplate.opsForHash().putAll(key, map);
            if (time > 0) {
                expire(key, time);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 向一张hash表中放入数据,如果不存在将创建
     *
     * @param key   键
     * @param item  项
     * @param value 值
     * @return true 成功 false失败
     */
    public boolean hset(String key, String item, Object value) {
        try {
            redisTemplate.opsForHash().put(key, item, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 向一张hash表中放入数据,如果不存在将创建
     *
     * @param key   键
     * @param item  项
     * @param value 值
     * @param time  时间(秒) 注意:如果已存在的hash表有时间,这里将会替换原有的时间
     * @return true 成功 false失败
     */
    public boolean hset(String key, String item, Object value, long time) {
        try {
            redisTemplate.opsForHash().put(key, item, value);
            if (time > 0) {
                expire(key, time);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 删除hash表中的值
     *
     * @param key  键 不能为null
     * @param item 项 可以使多个 不能为null
     */
    public void hdel(String key, Object... item) {
        redisTemplate.opsForHash().delete(key, item);
    }
    /**
     * 判断hash表中是否有该项的值
     *
     * @param key  键 不能为null
     * @param item 项 不能为null
     * @return true 存在 false不存在
     */
    public boolean hHasKey(String key, String item) {
        return redisTemplate.opsForHash().hasKey(key, item);
    }
    /**
     * hash递增 如果不存在,就会创建一个 并把新增后的值返回
     *
     * @param key  键
     * @param item 项
     * @param by   要增加几(大于0)
     */
    public double hincr(String key, String item, double by) {
        return redisTemplate.opsForHash().increment(key, item, by);
    }
    /**
     * hash递减
     *
     * @param key  键
     * @param item 项
     * @param by   要减少记(小于0)
     */
    public double hdecr(String key, String item, double by) {
        return redisTemplate.opsForHash().increment(key, item, -by);
    }
    // ============================set=============================
    /**
     * 根据key获取Set中的所有值
     * @param key 键
     */
    public Set<Object> sGet(String key) {
        try {
            return redisTemplate.opsForSet().members(key);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }
    /**
     * 根据value从一个set中查询,是否存在
     *
     * @param key   键
     * @param value 值
     * @return true 存在 false不存在
     */
    public boolean sHasKey(String key, Object value) {
        try {
            return redisTemplate.opsForSet().isMember(key, value);
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 将数据放入set缓存
     *
     * @param key    键
     * @param values 值 可以是多个
     * @return 成功个数
     */
    public long sSet(String key, Object... values) {
        try {
            return redisTemplate.opsForSet().add(key, values);
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }
    /**
     * 将set数据放入缓存
     *
     * @param key    键
     * @param time   时间(秒)
     * @param values 值 可以是多个
     * @return 成功个数
     */
    public long sSetAndTime(String key, long time, Object... values) {
        try {
            Long count = redisTemplate.opsForSet().add(key, values);
            if (time > 0)
                expire(key, time);
            return count;
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }
    /**
     * 获取set缓存的长度
     *
     * @param key 键
     */
    public long sGetSetSize(String key) {
        try {
            return redisTemplate.opsForSet().size(key);
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }
    /**
     * 移除值为value的
     *
     * @param key    键
     * @param values 值 可以是多个
     * @return 移除的个数
     */
    public long setRemove(String key, Object... values) {
        try {
            Long count = redisTemplate.opsForSet().remove(key, values);
            return count;
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }
    // ===============================list=================================
    /**
     * 获取list缓存的内容
     *
     * @param key   键
     * @param start 开始
     * @param end   结束 0 到 -1代表所有值
     */
    public List<Object> lGet(String key, long start, long end) {
        try {
            return redisTemplate.opsForList().range(key, start, end);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }
    /**
     * 获取list缓存的长度
     *
     * @param key 键
     */
    public long lGetListSize(String key) {
        try {
            return redisTemplate.opsForList().size(key);
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }
    /**
     * 通过索引 获取list中的值
     *
     * @param key   键
     * @param index 索引 index>=0时, 0 表头,1 第二个元素,依次类推;index<0时,-1,表尾,-2倒数第二个元素,依次类推
     */
    public Object lGetIndex(String key, long index) {
        try {
            return redisTemplate.opsForList().index(key, index);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }
    /**
     * 将list放入缓存
     *
     * @param key   键
     * @param value 值
     */
    public boolean lSet(String key, Object value) {
        try {
            redisTemplate.opsForList().rightPush(key, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 将list放入缓存
     * @param key   键
     * @param value 值
     * @param time  时间(秒)
     */
    public boolean lSet(String key, Object value, long time) {
        try {
            redisTemplate.opsForList().rightPush(key, value);
            if (time > 0)
                expire(key, time);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 将list放入缓存
     *
     * @param key   键
     * @param value 值
     * @return
     */
    public boolean lSet(String key, List<Object> value) {
        try {
            redisTemplate.opsForList().rightPushAll(key, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 将list放入缓存
     *
     * @param key   键
     * @param value 值
     * @param time  时间(秒)
     * @return
     */
    public boolean lSet(String key, List<Object> value, long time) {
        try {
            redisTemplate.opsForList().rightPushAll(key, value);
            if (time > 0)
                expire(key, time);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 根据索引修改list中的某条数据
     *
     * @param key   键
     * @param index 索引
     * @param value 值
     * @return
     */
    public boolean lUpdateIndex(String key, long index, Object value) {
        try {
            redisTemplate.opsForList().set(key, index, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }
    /**
     * 移除N个值为value
     *
     * @param key   键
     * @param count 移除多少个
     * @param value 值
     * @return 移除的个数
     */
    public long lRemove(String key, long count, Object value) {
        try {
            Long remove = redisTemplate.opsForList().remove(key, count, value);
            return remove;
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }
}


八、redis持久化.RDB/.AOF


8.1 RDB

redis 是内存数据库,断电失去数据,需要持久化。

在指定的时间间隔内将内存中的数据集快照写入磁盘,也就是行话讲的Snapshot快照,它恢复时是将快照文件直接读到内存里。

Redis会单独创建( fork ) -个子进程来进行持久化,会先将数据写入到一一个临时文件中,待持久化过程都结束了, 再用这个临时文件替换.上次持久化好的文件。整个过程中,主进程是不进行任何I0操作的。这就确保了极高的性能。如果需要进行大规模数据的恢复,且对于数据恢复的完整性不是非常敏感,那RDB方式要比AOF方式更加的高效。RDB的缺点是最后一次持久化后的数据可能丢失。


默认的是RDB:dump.rdb

20200803105628987.png

1.测试:修改配置文件

20200803105754597.png


2.删掉dump.rdb rm -f dump.rdb

3.set k1 v1

set k2 v2

set k3 v3

set k4 v4

set k5 v5

4.可以看到有了一个 dump.rdb文件

5.redis 关机:shutdown

6.开机查看数据:get k1

7.数据恢复:将rdb文件放置redis目录下即可,启动会自动加载

20200803110433242.png

优点:大规模的数据恢复,dump.rdb。对数据的完整性要求不高。

缺点:需要一定的时间来进行备份,如果脱机,最后一次修改的数据就没了。fork进行的时候,会占用内存空间。


8.2 AOF [Append Only File]


将所有的命令都记录下来,以日志的形式来记录每个写操作, 将Redis执行过的所有指令记录下来(读操作不记录) , 只许追加文件但不可以改写文件, redis启动之初会读取该文件重新构建数据,换言之, redis重启的话就根据日志文件的内容将写指令从前到后执行一-次以完成数据的恢复工作。

20200803110917707.png

默认是不开启的,我们需要手动进行配置!我们只需要将appendonly改为yes就开启了aof !

重启, redis就可以生效了!

如果这个aof文件有错位,这时候redis 是启动不起来的吗,我们需要修复这个aof文件

redis给我们提供了一个工具[ redis-check-aof --fix

优点: 每一次修改都同步数据,文件完整性较好,每秒同步一次,可能会丢失1s一次

缺点: aof>rdb,修复速度较慢,运行效率也较慢


九、Redis发布-订阅


Redis发布订阅(pub/sub)是一-种消息通信模式:发送者(pub)发送消息。订阅者(sub)接收消息。

Redis客户端可以订阅任意数量的频道。

订阅/发布消息图:

20200803112209468.png


1.Redis是使用C实现的,通过分析Redis源码里的pubsub.c文件,了解发布和订阅机制的底层实现,籍此加深对Redis的理解。

2.Redis通过PUBLISH、SUBSCRIBE和PSUBSCRIBE等命令实现发布和订阅功能。

3.通过SUBSCRIBE命令订阅某频道后, redis-server里维护了- -个字典,字典的键就是一一个个channel , 而字典的值则是一个链表,链表中保存了所有订阅这个channel的客户端。SUBSCRIBE 命令的关键,就是将客户端添加到给定channel的订阅链表中。

4.通过PUBLISH命令向订阅者发送消息, redis-server会使用给定的频道作为键,在它所维护的channel字典中查找记录了订阅这个频道的所有客户端的链表,遍历这个链表,将消息发布给所有订阅者。

5.Pub/Sub从字面上理解就是发布( Publish )与订阅( Subscribe) , 在Redis中,你可以设定对某- -个key值进行消息发布及消息订阅,当一个key值上进行了消息发布后,所有订阅它的客户端都会收到相应的消息。这一功能最明显的用法就是用作实时消息系统,比如普通的即时聊天,群聊等功能。


十、Redis集群


10.1 主从复制


概念


主从复制,是指将一台Redis服务 器的数据,复制到其他的Redis服务器。前者称为主节(master/eader) ,后者称为从节点(slave/follower ;数据的复制是单向的,只能由主节点到从节点。Master以写为主 . Slave 以读为主。

默认情况下.每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点) ,但- -个从节点只能有一个主节点。

主从复制的作用主要包括:

1.数据冗余:主从复制实现了数据的热备份,是持久化Z外的一种数据冗余方式。

2.故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是-种服务的冗余。

3、负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务.由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点) . 分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。

4、高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

一般来说 。要将Redis运用于工程项目中,只使用一台Redis是万万不能的,原因如下:

1.从结构上,单个Redis服务器会发生单点故障, 并且一台服务器需要处理所有的请求负载,压力较大;

2.从容量上,单个Redis服务器内存容量有限,就算一台Redis服务器内存容量为256G ,也不能将所有内存用作Redis存储内存,

一般来说 。单台Redis最大使用内存不应该超过20G。



20200803113158586.png


低配:1主2从


10.2 单机伪分布式集群搭建


只配置从库,默认为主库。

info replication -->master


1. 将上面的redis.conf 复制多份


cp redis . conf redis79. conf

cp redis . conf redis80. conf

cp redis . conf redis81. conf


2. 将所有配置文件端口修改


port 6379

port 6380

port 6381


3. 修改所有配置文件的


dbfilename dump6379.rdb

dbfilename dump6380.rdb

dbfilename dump6381.rdb


4. 修改所有配置文件的后台运行pid


pidfile /var/run/redis_6379.pid

pidfile /var/run/redis_6380.pid

pidfile /var/run/redis_6381.pid


5. 修改所有的日子文件名称


logfile “6379.log”

logfile “6380.log”

logfile “6381.log”


6. 启动所有服务测试


redis-server /usr/local/bin/redisconf/redis79.conf

redis-server /usr/local/bin/redisconf/redis80.conf

redis-server /usr/local/bin/redisconf/redis81.conf


10.3 集群配置主从复制


默认三台都是主机master: 6379【主机】 6380【主机】 6381【主机】

info replication 查看信息

配置从机6380:【从机】

SLAVEOF 127.0.0.1 6379

配置从机6381:【从机】

SLAVEOF 127.0.0.1 6379


以上1主2从 配置为暂时性的,需要永久配置区配置文件。

主机负责写,从机负责读

20200803115320583.png

5. 以上没有哨兵,主机宕机后,从机没有上位


从机需要手动上位:


SLAVEOF on noe


Slave启动成功连接到master后会发送一个sync命令

Master接到命令,启动后台的存盘进程,同时收集所有接收至的用于修改数据集命令,在后台进程执行完 毕之后, master将传送整个数据文件到slave ,并完成一次完全同步。

全量复制:而slave服务在接收到数据库文件数据后,将其存盘并加载到内存中。

增量复制: Master继续将新的所有收集到的修改命令依次传给slave ,完成同步

但是只要是重新连接master , -次完全同步(全量复制)将被自动执行


10.4 哨兵模式【自动上位】


主从切换技术的方法是:当主服务器宕机后,需要手动把一台从服务器切换为主服务器,这就需要人工干预,费事费力,还会造成-段时间内服务不可用。这不是一种推荐的方式 ,更多时候,我们优先考虑哨兵模式。Redis从2.8开始正式提供 了Sentinel (哨兵)架构来解决这个问题。

谋朝篡位的自动版,能够后台监控主机是否故障。如果故障了根据投票数自动将从库转换为主库。

哨兵模式是一种特殊的模式,首先Redis提供了哨兵的命令,哨兵是一个独立的进程,作为进程,它会独立运行。其原理是哨兵通过发送命令,等待Redis服务器响应,从而监控运行的多个Redis实例。

这里的哨兵有两个作用

●通过发送命令,让Redis服务器返回监控其运行状态,包括主服务器和从服务器。

●当哨兵监测到master宕机,会自动将slavet切换成master ,然后通过发布订阅模式通知其他的从服务器,修改配置文件,让它们切换主机。然而一个哨兵进程对Redis服务器进行监控,可能会出现问题,为此,我们可以使用多个哨兵进行监控。各个哨兵之间还会进行监控,这样就形成了多哨兵模式。

20200803140702631.png


假设主服务器宕机,哨兵1先检测到这个结果,系统并不会马上进行failover过程,仅仅是哨兵1主观的认为主服务器不可用,这个现象成为主观下线。当后面的哨兵也检测到主服务器不可用,并且数量达到一定值时,那么哨兵之间就会进行一次投票 ,投票的结果由一个哨兵发起,进行failover[故障转移]操作。切换成功后,就会通过发布订阅模式,让各个哨兵把自己监控的从服务器实现切换主机,这个过程称为客观下线。


10.4.1 配置哨兵


1.vim sentinel.conf

sentinel monitor myredis 127.0.0.1 6379 1

2.启动哨兵

redis-sentinel /usr/local/bin/redisconf/sentinel.conf

主机宕机之后,会选举一台机器作为主机。


优点:


1、哨兵集群,基于主从复制模式,所有的主从配置优点,它全有

2、主从可以切换,故障可以转移,系统的可用性就会更好

3、哨兵模式就是主从模式的升级,手动到自动,更加健壮!


缺点:


1、 Redis不好啊在线扩容的,集群容量一旦到达上限,在线扩容就十分麻烦!

2、实现哨兵模式的配置其实是很麻烦的,里面有很多选择!


十一、Redis缓存穿透和雪崩


Redis缓存的使用,极大的提升了应用程序的性能和效率,特别是数据查询方面。但同时,它也带来了一些问题。其中,最要 害的问题,就是数据的一致性问题,从严格意义上讲,这个问题无解。如果对数据的一致性要求很高,那么就不能使用缓存。

另外的一些典型问题就是,缓存穿透、缓存雪崩和缓存击穿。目前,业界也都有比较流行的解决方案。


11.1 缓存穿透


缓存穿透的概念很简单,用户想要查询一个数据,发现redis内存数据库没有,也就是缓存没有命中.于是向持久层数据库查询。发现也没有于是本次查询失败。 当用户很多的时候,缓存都没有命中 (秒杀! ) ,于是都去请求 了持久层数据库。这会给持久层数据库造成很大的压力,这时候就相当于出现了缓存穿透。


解决方案:布隆过滤器


布隆过滤器是一种数据结构 ,对所有可能查询的参数以hash形式存储,在控制层先进行校验,不符合则丢弃,从而避免了对底层存储系统的查询压力;

20200803152129932.png

但是这种方法会存在两个问题:


1、如果空值能够被缓存起来,这就意味着缓存需要更多的空间存储更多的键,因为这当中可能会有很多的空值的键;

2、即使对空值设置了过期时间,还是会存在缓存层和存储层的数据会有一-段时间窗口的不一 致,这对于需要保持一致性的业务会 :有影响。


11.2 缓存击穿


这里需要注意和缓存击穿的区别, 缓存击穿,是指一个key非常热点,在不停的扛着大并发,大并发集中对这一-个点进行访问,当这个key在失效的瞬间,持续的大并发就穿破缓存,直接请求数据库,就像在一个屏障上凿开了一一个洞。

当某个key在过期的瞬间,有大量的请求并发访问,这类数据一般是热点数据,由于缓存过期,会同时访问数据库来查询最新数据,并且回写缓存,会导使数据库瞬间压力过大。

解决方案:


1.设置热点数据永不过期

从缓存层面来看,没有设置过期时间,所以不会出现热点key过期后产生的问题。

2.加互斥锁

分布式锁:使用分布式锁,保证对于每个key同时只有一个线程去查询后端服务 ,其他线程没有获得分布式锁的权限,因此只需要等待即可。这种方式将高并发的压力转移到了分布式锁,因此对分布式锁的考验很大。


11.3 缓存雪崩


缓存雪崩,是指在某一个时间段,缓存集中过期失效。Redis 宕机!

产生雪崩的原因之一, 比如在写本文的时候,马上就要到双十二零点,很快就会迎来一波抢购,这波商品时间比较集中的放入了缓存,假设缓存一一个小时。那么到了凌晨一 -点钟的时候,这批商品的缓存就都过期了。而对这批商品的访问查询,都落到了数据库上,对于数据库而言,就会产生周期性的压力波峰。于是所有的请求都会达到存储层,存储层的调用量会暴增,造成存储层也会挂掉的情况。


其实集中过期,倒不是非常致命,比较致命的缓存雪崩,是缓存服务器某个节点宕机或断网。因为自然形成的缓存雪崩, - 定是在某个时间段集中创建缓存,这个时候,数据库也是可以顶住压力的。无非就是对数据库产生周期性的压力而已。而缓存服务节点的宕机,对数据库服务器造成的压力是不可预知的,很有可能瞬间就把数据库压垮。

解决方案:


redis高可用

这个思想的含义是,既然redis有可能挂掉,那我多增设几台redis ,这样一台挂掉之 后其他的还可以继续工作,其实就是搭建的集群。(异地多活!)

限流降级

这个解决方案的思想是,在缓存失效后,通过加锁或者队列来控制读数据库写缓存的线程数量。比如对某个key只允许一个线程查询数据和写缓存,其他线程等待。

数据预热

数据加热的含义就是在正式部署之前,我先把可能的数据先预先访问一遍,这样部分可能大量访问的数据就会加载到缓存中。在即将发生大并发访问前手动触发加载缓存不同的key ,设置不同的过期时间,让缓存失效的时间点尽量均匀。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
相关文章
|
27天前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
8天前
|
存储 NoSQL Redis
redis常见数据类型
Redis 是一种基于内存的键值存储数据库,支持字符串、哈希表、列表、集合及有序集合等多种数据类型,每种类型均有特定用途与适用场景,提供丰富的命令操作,适用于高速数据访问与处理。
23 5
|
28天前
|
存储 监控 NoSQL
【赵渝强老师】Redis的RDB数据持久化
Redis 是内存数据库,提供数据持久化功能以防止服务器进程退出导致数据丢失。Redis 支持 RDB 和 AOF 两种持久化方式,其中 RDB 是默认的持久化方式。RDB 通过在指定时间间隔内将内存中的数据快照写入磁盘,确保数据的安全性和恢复能力。RDB 持久化机制包括创建子进程、将数据写入临时文件并替换旧文件等步骤。优点包括适合大规模数据恢复和低数据完整性要求的场景,但也有数据完整性和一致性较低及备份时占用内存的缺点。
|
29天前
|
存储 消息中间件 NoSQL
使用Java操作Redis数据类型的详解指南
通过使用Jedis库,可以在Java中方便地操作Redis的各种数据类型。本文详细介绍了字符串、哈希、列表、集合和有序集合的基本操作及其对应的Java实现。这些示例展示了如何使用Java与Redis进行交互,为开发高效的Redis客户端应用程序提供了基础。希望本文的指南能帮助您更好地理解和使用Redis,提升应用程序的性能和可靠性。
35 1
|
1月前
|
存储 缓存 监控
利用 Redis 缓存特性避免缓存穿透的策略与方法
【10月更文挑战第23天】通过以上对利用 Redis 缓存特性避免缓存穿透的详细阐述,我们对这一策略有了更深入的理解。在实际应用中,我们需要根据具体情况灵活运用这些方法,并结合其他技术手段,共同保障系统的稳定和高效运行。同时,要不断关注 Redis 缓存特性的发展和变化,及时调整策略,以应对不断出现的新挑战。
64 10
|
1月前
|
缓存 监控 NoSQL
Redis 缓存穿透的检测方法与分析
【10月更文挑战第23天】通过以上对 Redis 缓存穿透检测方法的深入探讨,我们对如何及时发现和处理这一问题有了更全面的认识。在实际应用中,我们需要综合运用多种检测手段,并结合业务场景和实际情况进行分析,以确保能够准确、及时地检测到缓存穿透现象,并采取有效的措施加以解决。同时,要不断优化和改进检测方法,提高检测的准确性和效率,为系统的稳定运行提供有力保障。
50 5
|
1月前
|
缓存 监控 NoSQL
Redis 缓存穿透及其应对策略
【10月更文挑战第23天】通过以上对 Redis 缓存穿透的详细阐述,我们对这一问题有了更深入的理解。在实际应用中,我们需要根据具体情况综合运用多种方法来解决缓存穿透问题,以保障系统的稳定运行和高效性能。同时,要不断关注技术的发展和变化,及时调整策略,以应对不断出现的新挑战。
49 4
|
2月前
|
存储 消息中间件 NoSQL
Redis 数据类型
10月更文挑战第15天
40 1
|
2月前
|
存储 缓存 分布式计算
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
大数据-89 Spark 集群 RDD 编程-高阶 编写代码、RDD依赖关系、RDD持久化/缓存
46 4
|
2月前
|
消息中间件 缓存 NoSQL
大数据-49 Redis 缓存问题中 穿透、雪崩、击穿、数据不一致、HotKey、BigKey
大数据-49 Redis 缓存问题中 穿透、雪崩、击穿、数据不一致、HotKey、BigKey
58 2