机器学习——降维算法PCA

简介: 机器学习——降维算法PCA

以下是使用PCA算法处理实际问题的例子,同样使用鸢尾花数据集,目的依旧是完成降维任务


基本的流程如下:


1.数据预处理,只有数值数据才可以进行PCA降维


2.计算样本数据的协方差方阵


3.求解协方差矩阵的特征值和特征向量


4.将特征值按照从大到小的顺序排列,选择其中较大的K个,然后将其对应的K个特征向量组成投影矩阵


5.将样本点投影计算,完成PCA降维任务


1、导入数据


import numpy as np
import pandas as pd
# 读取数据集
df = pd.read_csv('iris.data')
# 原始数据没有给定列名的时候需要我们自己加上
df.columns=['sepal_len', 'sepal_wid', 'petal_len', 'petal_wid', 'class']
df.head()

image.png


2、展示数据特征


# 把数据分成特征和标签
X = df.iloc[:,0:4].values
y = df.iloc[:,4].values
from matplotlib import pyplot as plt
# 展示我们标签用的
label_dict = {1: 'Iris-Setosa',
              2: 'Iris-Versicolor',
              3: 'Iris-Virgnica'}
# 展示特征用的
feature_dict = {0: 'sepal length [cm]',
                1: 'sepal width [cm]',
                2: 'petal length [cm]',
                3: 'petal width [cm]'}
# 指定绘图区域大小
plt.figure(figsize=(8, 6))
for cnt in range(4):
    # 这里用子图来呈现4个特征
    plt.subplot(2, 2, cnt+1)
    for lab in ('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'):
        plt.hist(X[y==lab, cnt],
                     label=lab,
                     bins=10,
                     alpha=0.3,)
    plt.xlabel(feature_dict[cnt])
    plt.legend(loc='upper right', fancybox=True, fontsize=8)
plt.tight_layout()
plt.show()

image.png


可以看见,有些特征区别能力较强,能把3种花各自呈现出来;有的特征区别能力较弱,部分特征数据样本混杂在一起。


3、数据标准化


一般情况下,在进行训练前,数据经常需要进行标准化处理。


from sklearn.preprocessing import StandardScaler
X_std = StandardScaler().fit_transform(X)


4、计算协方差矩阵


mean_vec = np.mean(X_std, axis=0)
cov_mat = (X_std - mean_vec).T.dot((X_std - mean_vec)) / (X_std.shape[0]-1)
print('协方差矩阵 \n%s' %cov_mat)
# 利用numpy也可以
# print('NumPy 计算协方差矩阵: \n%s' %np.cov(X_std.T))
协方差矩阵 
[[ 1.00675676 -0.10448539  0.87716999  0.82249094]
 [-0.10448539  1.00675676 -0.41802325 -0.35310295]
 [ 0.87716999 -0.41802325  1.00675676  0.96881642]
 [ 0.82249094 -0.35310295  0.96881642  1.00675676]]


5、求特征值与特征向量


cov_mat = np.cov(X_std.T)
eig_vals, eig_vecs = np.linalg.eig(cov_mat)
print('特征向量 \n%s' %eig_vecs)
print('\n特征值 \n%s' %eig_vals)
特征向量 
[[ 0.52308496 -0.36956962 -0.72154279  0.26301409]
 [-0.25956935 -0.92681168  0.2411952  -0.12437342]
 [ 0.58184289 -0.01912775  0.13962963 -0.80099722]
 [ 0.56609604 -0.06381646  0.63380158  0.52321917]]
特征值 
[2.92442837 0.93215233 0.14946373 0.02098259]


6、按照特征值大小进行排序


# 把特征值和特征向量对应起来
eig_pairs = [(np.abs(eig_vals[i]), eig_vecs[:,i]) for i in range(len(eig_vals))]
print (eig_pairs)
print ('----------')
# 把它们按照特征值大小进行排序
eig_pairs.sort(key=lambda x: x[0], reverse=True)
# 打印排序结果
print('特征值又大到小排序结果:')
for i in eig_pairs:
    print(i[0])
[(2.9244283691111126, array([ 0.52308496, -0.25956935,  0.58184289,  0.56609604])), (0.9321523302535072, array([-0.36956962, -0.92681168, -0.01912775, -0.06381646])), (0.14946373489813383, array([-0.72154279,  0.2411952 ,  0.13962963,  0.63380158])), (0.020982592764270565, array([ 0.26301409, -0.12437342, -0.80099722,  0.52321917]))]
----------
特征值又大到小排序结果:
2.9244283691111126
0.9321523302535072
0.14946373489813383
0.020982592764270565


7、计算累积结果


将特征向量累加起来,超过一定百分比时,就可以选择其为降维后的维度大小


# 计算累加结果
tot = sum(eig_vals)
var_exp = [(i / tot)*100 for i in sorted(eig_vals, reverse=True)]
print (var_exp)
cum_var_exp = np.cumsum(var_exp)
cum_var_exp
[72.62003332692029, 23.147406858644153, 3.711515564584534, 0.5210442498510144]
array([ 72.62003333,  95.76744019,  99.47895575, 100.        ])


可以发现,使用前两个特征值时,其对应的累积贡献率已经超过了95%,所以选择降到了二维。


# cumsum的用法例子
a = np.array([1,2,3,4])
print (a)
print ('-----------')
print (np.cumsum(a))
[1 2 3 4]
-----------
[ 1  3  6 10]


画图可以更直接的展示


plt.figure(figsize=(6, 4))
plt.bar(range(4), var_exp, alpha=0.5, align='center',
            label='individual explained variance')
plt.step(range(4), cum_var_exp, where='mid',
             label='cumulative explained variance')
plt.ylabel('Explained variance ratio')
plt.xlabel('Principal components')
plt.legend(loc='best')
plt.tight_layout()
plt.show()

image.png


8、完成PCA降维


将前两个特征向量组合起来完成降维操作


matrix_w = np.hstack((eig_pairs[0][1].reshape(4,1),
                      eig_pairs[1][1].reshape(4,1)))
print('Matrix W:\n', matrix_w)
Matrix W:
 [[ 0.52308496 -0.36956962]
 [-0.25956935 -0.92681168]
 [ 0.58184289 -0.01912775]
 [ 0.56609604 -0.06381646]]
Y = X_std.dot(matrix_w)
print("X.shape : ",X.shape)
print("Y.shape : ",Y.shape)
X.shape :  (149, 4)
Y.shape :  (149, 2)


可以看见将原来的数据从4维降到2维


9、可视化对比降维前后数据的分布

由于数据具有4个特征,无法在平面图中显示,因此只使用两维特征显示数据


plt.figure(figsize=(6, 4))
for lab, col in zip(('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'),
                        ('blue', 'red', 'green')):
     plt.scatter(X[y==lab, 0],
                X[y==lab, 1],
                label=lab,
                c=col)
plt.xlabel('sepal_len')
plt.ylabel('sepal_wid')
plt.legend(loc='best')
plt.tight_layout()
plt.show()

image.png


降维后的结果


plt.figure(figsize=(6, 4))
for lab, col in zip(('Iris-setosa', 'Iris-versicolor', 'Iris-virginica'),
                        ('blue', 'red', 'green')):
     plt.scatter(Y[y==lab, 0],
                Y[y==lab, 1],
                label=lab,
                c=col)
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
plt.legend(loc='lower center')
plt.tight_layout()
plt.show()

image.png


目录
相关文章
|
29天前
|
机器学习/深度学习 数据采集 人工智能
【机器学习算法篇】K-近邻算法
K近邻(KNN)是一种基于“物以类聚”思想的监督学习算法,通过计算样本间距离,选取最近K个邻居投票决定类别。支持多种距离度量,如欧式、曼哈顿、余弦相似度等,适用于分类与回归任务。结合Scikit-learn可高效实现,需合理选择K值并进行数据预处理,常用于鸢尾花分类等经典案例。(238字)
|
6月前
|
机器学习/深度学习 数据采集 人工智能
20分钟掌握机器学习算法指南
在短短20分钟内,从零开始理解主流机器学习算法的工作原理,掌握算法选择策略,并建立对神经网络的直观认识。本文用通俗易懂的语言和生动的比喻,帮助你告别算法选择的困惑,轻松踏入AI的大门。
|
7月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
8月前
|
机器学习/深度学习 人工智能 自然语言处理
AI训练师入行指南(三):机器学习算法和模型架构选择
从淘金到雕琢,将原始数据炼成智能珠宝!本文带您走进数字珠宝工坊,用算法工具打磨数据金砂。从基础的经典算法到精密的深度学习模型,结合电商、医疗、金融等场景实战,手把手教您选择合适工具,打造价值连城的智能应用。掌握AutoML改装套件与模型蒸馏术,让复杂问题迎刃而解。握紧算法刻刀,为数字世界雕刻文明!
286 6
|
9月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于机器学习的人脸识别算法matlab仿真,对比GRNN,PNN,DNN以及BP四种网络
本项目展示了人脸识别算法的运行效果(无水印),基于MATLAB2022A开发。核心程序包含详细中文注释及操作视频。理论部分介绍了广义回归神经网络(GRNN)、概率神经网络(PNN)、深度神经网络(DNN)和反向传播(BP)神经网络在人脸识别中的应用,涵盖各算法的结构特点与性能比较。
|
10月前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
1752 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
10月前
|
机器学习/深度学习 算法 网络安全
CCS 2024:如何严格衡量机器学习算法的隐私泄露? ETH有了新发现
在2024年CCS会议上,苏黎世联邦理工学院的研究人员提出,当前对机器学习隐私保护措施的评估可能存在严重误导。研究通过LiRA攻击评估了五种经验性隐私保护措施(HAMP、RelaxLoss、SELENA、DFKD和SSL),发现现有方法忽视最脆弱数据点、使用较弱攻击且未与实际差分隐私基线比较。结果表明这些措施在更强攻击下表现不佳,而强大的差分隐私基线则提供了更好的隐私-效用权衡。
243 14
|
9月前
|
人工智能 编解码 算法
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
使用 PAI-DSW x Free Prompt Editing图像编辑算法,开发个人AIGC绘图小助理
196 0
|
9月前
|
机器学习/深度学习 人工智能 自然语言处理
解锁机器学习的新维度:元学习的算法与应用探秘
元学习作为一个重要的研究领域,正逐渐在多个应用领域展现其潜力。通过理解和应用元学习的基本算法,研究者可以更好地解决在样本不足或任务快速变化的情况下的学习问题。随着研究的深入,元学习有望在人工智能的未来发展中发挥更大的作用。
|
11月前
|
算法
PAI下面的gbdt、xgboost、ps-smart 算法如何优化?
设置gbdt 、xgboost等算法的样本和特征的采样率
292 2

热门文章

最新文章