阿里云大数据ACP专业认证实验之05-MaxCompute内置函数(上)(二)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 阿里云大数据ACP专业认证实验之05-MaxCompute内置函数(上)(二)

第 2 章:实验详情


2.1 数值类数类


(1) 三角函数类

已知三角形两边长度为10,20,夹角为60度,求三角形面积

select 0.51020sin(60/1803.1415926) from dual;

输入sql脚本,点击【运行】,查看结果

20200706081140458.png

(2) 数字整形类:


对数字进行加工处理,请分别显示数字 3.1415926 的向上取整值、向下取整值、四舍五入保留3位小数的值、截掉小数位的值以及用二进制来表示该值。

Select ceil(3.1415926),
floor(3.1415926),
round(3.1415926,3),
trunc(3.1415926),
conv('3.1415926',10,2)
from dual;

输入脚本,点击【运行】,查看结果


20200706081200461.png

(3) 随机函数类:

select rand() from dual;
select rand(detail_id),rand() from t_dml limit 10;

输入sql脚本,点击【运行】,查看结果


20200706081222725.png

(4) 综合使用
  使用蒙特卡洛法求π值的近似值:产生一系列的成对的随机数,根据每队随机数到点(0.5,0.5)的距离可判断该点是否在单位圆内,计算落在圆内的点占所有点的比例,即可得到π值的近似值:
     // 产生约10万对随机点进行近似值计算:
select (inCircle/totalCnt)/pow(0.5,2) as PI 
from (select count(*) as totalCnt,
sum(case when sqrt(pow((x-0.5),2)+pow((y-0.5),2)) <0.5 then 1 else 0 end) inCircle
from (select /*+mapjoin(t2)*/ rand() as x,rand() as y
from (select * from t_dml limit 10000) t1
left outer join (select * from t_dml limit 10) t2
 on t1.detail_id <> t2.detail_id) tt
) t;
// 产生约100万对随机点进行近似值计算:
select (inCircle/totalCnt)/pow(0.5,2) as PI
from (select count(*) as totalCnt,
sum(case when sqrt(pow((x-0.5),2)+pow((y-0.5),2)) <0.5 then 1 else 0 end) inCircle
from (select /*+mapjoin(t2)*/ rand() as x,rand() as y
from (select * from t_dml limit 10000) t1
left outer join (select * from t_dml limit 100) t2
on t1.detail_id <> t2.detail_id) tt
) t;


输入脚本,点击【运行】,查看结果:

202007060812529.png

输入脚本,点击【运行】,查看结果:


20200706081312575.png

2.2 字符串类函数


(1) 长度类:

输入脚本,点击【运行】,查看结果

select province,length(province),lengthb(province) from t_dml limit 10;

20200706081341572.png


(2) 查找类:


目前销售记录中,哪些省、市名字比较接近?


select province, city, char_matchcount(province, city) as sim


 from (select distinct province, city
          from t_dml) t


order by sim desc

limit 10;


输入脚本,点击【运行】,查看结果

2020070608140294.png

目前销售记录中,省份的第一个字在城市名中是否出现?有没有出现多次的?


select province, city,
instr(city,substr(province,1,3),1,1) as FirstPos,
case when instr(city,substr(province,1,3),1,2) = 0 then 'No'
else 'Yes'
end as SecondPos
 from (select distinct province, city
          from t_dml) t
order by SecondPos desc, FirstPos desc
limit 10;


输入脚本,点击【运行】,查看结果


20200706081424289.png


(3) 转换类:


要把数据从一个编码为 utf8 的库导入到一个字符集为 gb2132 的库中,其中有些繁体字,如“阿裏雲”等字样,请问会出现乱码的情况吗?


select is_encoding('阿裏雲', 'utf-8', 'gb2312') from dual;


输入脚本,点击【运行】,查看结果

2020070608144692.png


(4) 整形类:

select concat(province, '|',city) from t_dml limit 10;


select category_name, tolower(split_part(category_name,' ',2))


from t_product;


输入脚本,点击【运行】,查看结果

20200706081505275.png

输入脚本,点击【运行】,查看结果

20200706081525306.png

2.3 日期类函数


(1) 日期获取:

//根据日期,截取部分信息

select dt,

datepart(dt, 'yyyy') as year,

             datepart(dt, 'mm') as month,
             datepart(dt, 'dd') as day,
             datepart(dt, 'hh') as hour,
             datepart(dt, 'mi') as minute,

datepart(dt, 'ss') as second

from (select getdate() dt from dual) t;


输入脚本,点击【运行】,查看结果

2020070608155682.png

// 日期截取

select datetrunc('2015-01-31 02:30:45', 'dd') from dual;

输入脚本,点击【运行】,查看结果


20200706081617427.png

// 获得具体日期

select getdate(),lastday(getdate()),weekday(getdate()),weekofyear(getdate())


from dual;

输入脚本,点击【运行】,查看结果


2020070608163732.png


(2) 日期转换:


//字符串转成日期, 日期转换成字符串

select to_date('20150131','yyyymmdd'),
to_char('2015-01-31 00:00:00', '日期:yyyymmdd')
from dual;

输入脚本,点击【运行】,查看结果

20200706081657423.png

// Unix时间和ODPS时间互转

select from_unixtime(1), unix_timestamp('2015-10-01 00:00:00') from dual;

输入脚本,点击【运行】,查看结果


20200706081716326.png


// 判断字符串是否满足预定义的日期格式

select sale_date, isdate(sale_date, 'yyyymmdd') from t_dml limit 10;

输入脚本,点击【运行】,查看结果

20200706081734939.png


(3) 日期运算:


统计5月1日从产品5第一次成交后一小时三十分钟内(含),产品5销量(含第一次成交)占同期总销量的比例:


select /+mapjoin(t2)/


sum(case when product_id=5 then cnt else 0 end)/sum(cnt)


 from t_dml t1
    join (select min(sale_date) as begin_dt,
                          dateadd(dateadd(min(sale_date),1,'hh'),30, 'mi') as end_dt
                 from t_dml
         where product_id=5
                   and datetrunc(sale_date,'dd')='2015-05-01 00:00:00')t2
       on t1.sale_date >= t2.begin_dt
  and t1.sale_date <= t2.end_dt;

输入脚本,点击【运行】,查看结果


20200706081756381.png

日期相减:

select max(sale_date), min(sale_date),

datediff(max(sale_date),min(sale_date),'dd')

from t_dml;

输入脚本,点击【运行】,查看结果


20200706081816611.png


第 3 章:实验总结


3.1 实验总结


MaxCompute的这几类函数基本覆盖了我们日常工作的绝大多数数据处理需求,通过灵活熟练的使用这些函数,

可以提升开发效率,若仍有无法满足的需求,还可以考虑自定义函数。


第 4 章:课后任务


4.1 课后任务


1、计算t_dml表中最大的日期距离2017-08-01的天数

2、计算t_dml表中province字段,以“省”结尾的值的个数

3、计算t_product表各产品价格与产品对应分类下所有产品平均价格的差额,输出产品id和价格差额


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
8天前
|
数据采集 机器学习/深度学习 人工智能
面向 MoE 和推理模型时代:阿里云大数据 AI 产品升级发布
2025 AI 势能大会上,阿里云大数据 AI 平台持续创新,贴合 MoE 架构、Reasoning Model 、 Agentic RAG、MCP 等新趋势,带来计算范式变革。多款大数据及 AI 产品重磅升级,助力企业客户高效地构建 AI 模型并落地 AI 应用。
|
2月前
|
SQL 分布式计算 数据挖掘
阿里云 MaxCompute MaxQA 开启公测,公测可申请 100CU 计算资源解锁近实时高效查询体验
阿里云云原生大数据计算服务 MaxCompute 推出 MaxQA(原 MCQA2.0)查询加速功能,在独享的查询加速资源池的基础上,对管控链路、查询优化器、执行引擎、存储引擎以及缓存机制等多个环节进行全面优化,显著减少了查询响应时间,适用于 BI 场景、交互式分析以及近实时数仓等对延迟要求高且稳定的场景。现正式开启公测,公测期间可申请100CU(价值15000元)计算资源用于测试,欢迎广大开发者及企业用户参与,解锁高效查询体验!
阿里云 MaxCompute MaxQA 开启公测,公测可申请 100CU 计算资源解锁近实时高效查询体验
|
2月前
|
人工智能 大数据
阿里云云计算ACA、大数据ACA、人工智能ACA三门认证升级调整公告
阿里云云计算ACA、大数据ACA、人工智能ACA三门认证升级调整公告
|
2月前
|
存储 分布式计算 大数据
基于阿里云大数据平台的实时数据湖构建与数据分析实战
在大数据时代,数据湖作为集中存储和处理海量数据的架构,成为企业数据管理的核心。阿里云提供包括MaxCompute、DataWorks、E-MapReduce等在内的完整大数据平台,支持从数据采集、存储、处理到分析的全流程。本文通过电商平台案例,展示如何基于阿里云构建实时数据湖,实现数据价值挖掘。平台优势包括全托管服务、高扩展性、丰富的生态集成和强大的数据分析工具。
|
2月前
|
存储 分布式计算 物联网
美的楼宇科技基于阿里云 EMR Serverless Spark 构建 LakeHouse 湖仓数据平台
美的楼宇科技基于阿里云 EMR Serverless Spark 建设 IoT 数据平台,实现了数据与 AI 技术的有效融合,解决了美的楼宇科技设备数据量庞大且持续增长、数据半结构化、数据价值缺乏深度挖掘的痛点问题。并结合 EMR Serverless StarRocks 搭建了 Lakehouse 平台,最终实现不同场景下整体性能提升50%以上,同时综合成本下降30%。
|
3月前
|
机器学习/深度学习 人工智能 分布式计算
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
我的阿里云社区年度总结报告:Python、人工智能与大数据领域的探索之旅
173 35
|
1月前
|
存储 分布式计算 运维
课时6:阿里云MaxCompute:轻松玩转大数据
阿里云MaxCompute是全新的大数据计算服务,提供快速、完全托管的PB级数据仓库解决方案。它拥有高效的压缩存储技术、强大的计算能力和丰富的用户接口,支持SQL查询、机器学习等高级分析。MaxCompute兼容多种计算模型,开箱即用,具备金融级安全性和灵活的数据授权功能,帮助企业节省成本并提升效率。
|
2月前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
|
2月前
|
SQL 人工智能 大数据
【4月重点功能发布】阿里云大数据+ AI 一体化平台
【4月重点功能发布】阿里云大数据+ AI 一体化平台
|
2月前
|
SQL 人工智能 分布式计算
【3月重点功能发布】阿里云大数据+ AI 一体化平台
【3月重点功能发布】阿里云大数据+ AI 一体化平台

热门文章

最新文章

下一篇
oss创建bucket