游戏中AI的行为树(Behaviour Tree in Game AI)

简介:

行为树已经成为游戏AI中重要流行的实现方式,相比其他种类的ai(如神经网络,遗传算法,机器学习)更适合策划配置和控制,相比fsm更易扩展,在arpg中的怪物ai中比较流行。这里对行为树的概念做个总结。

                行为树是一个树状结构,没给节点都是一个行为节点,ai的执行过程就是从树根按照一定规则开始遍历整个树的过程,通常实现上会在没帧从树根处tick一遍整棵树。这棵树完整执行完一次的过程中可能对树遍历过很多次,因为每次整个树遍历完之后,如果还有节点还在running状态,就要在从根处tick一下再遍历,当run后没有任何节点在running就是执行完了一次,这时一般会进行新的一次执行,

                节点有不同的功能,有的控制遍历的顺序,有的执行确切的游戏逻辑。

                节点通常包括这样几个函数 init() 第一次遍历到该节点  run()每次执行到该节点(每次tick这颗树的时候tick到) exit()离开这个节点(整棵树执行完一次)有的实现还会加一个update(),被run()调用来表示那些多帧操作的行为每次tick到的时候的操作

                节点的run通常返回三种状态 success 完成 fail 失败 running 仍然在运行中(一些需要多帧完成的动作)

                节点一般要存储上一次run之后的返回值状态

                每次遍历到一个节点的时候可以根据节点上次的返回值状态来决定本次run的情况

                节点可能还需要有中止运行的功能

                

               根据节点的run行为主要有以下几种类型的节点:

               ConditionNode:判断一个逻辑,返回T 或 F,T和F分别连接着下一个要遍历的节点,在run里面一般不管上次的返回值状态都会重新做一次判断,以让ai能够实时反馈最新的环境情况。如果本次判断和前次判断有差,则要中止前次分支下的所有节点。

               ActionNode:这通常是一个叶子节点,执行一个程序逻辑。对于一个需要多帧完成的逻辑,在run里面可以根据上次的状态执行每帧操作。

       SequenceNode:他的所有子节点要按顺序完成,即逐个遍历每个子节点,只有当每个节点都返回success自己才能返回success,否则自己返回running,只有前一个自节点返回成功或失败才进行下一个自节点的探测

       SelectorNode:和sequeNode的and操作相反,它是or,它的所有自节点,只要有一个返回success,他自己就返回success,否则自己返回running,只有前一个自节点返回成功或失败才进行下一个自节点的探测

               RandomNode:随机挑一个子节点遍历,run后就返回success,只有一次执行的第一次遍历才会进行判断要遍历的子节点,并记住这个节点,对于后面的遍历直接找到这个子节点遍历。

               Invertor:将子节点的success或fail的返回值取反作为自己的返回值。子节点running自己就running

               Succeeder:子节点无论返回什么,自己都返回succe

               Repeator:重复执行自节点,直到达到指定条件(如执行次数之前)自己都处于running

                当然这些都是常见的一些设计上的模式,我们还可以根据我们的需要定义你需要的节点,还有最重要的一点,你必须有一个好用的图形化的行为树编辑器给策划

               

目录
相关文章
|
9天前
|
人工智能 自然语言处理 文字识别
DeepMind首发游戏AI智能体SIMA:开启虚拟世界的智能探索之旅
【4月更文挑战第3天】DeepMind推出了SIMA,一种能在多个3D环境中执行语言指令的智能体,标志着AI在理解和互动虚拟世界上的进步。SIMA通过多样化的训练数据学习导航、操作、决策等技能,并结合预训练模型处理高维度输入输出。尽管在复杂任务上仍有提升空间,SIMA展现了正向迁移能力和潜力,为AI研究和未来机器人技术铺平道路。然而,仍需解决鲁棒性、可控性、评估方法及道德安全问题。
37 4
DeepMind首发游戏AI智能体SIMA:开启虚拟世界的智能探索之旅
|
9天前
|
人工智能 NoSQL 安全
MongoDB观点:让生成式AI成为业务增长的新动能,游戏公司可以这样做
游戏公司采用检索增强生成(RAG)技术,如MongoDB Atlas Vector Search,以提高AI输出的准确性和定制化服务。通过灵活的文档数据库如MongoDB Atlas,企业能更好地集成AI,确保数据安全并抓住创新机遇。ChatGPT标志着AI时代的转折点,游戏公司凭借大量数据优势,有望在这一变革中引领行业发展。
2870 3
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
【AI 生成式】生成式人工智能如何在虚拟现实和游戏中使用?
【5月更文挑战第4天】【AI 生成式】生成式人工智能如何在虚拟现实和游戏中使用?
|
9天前
|
机器学习/深度学习 人工智能 算法
【Python 机器学习专栏】强化学习在游戏 AI 中的实践
【4月更文挑战第30天】强化学习在游戏AI中展现巨大潜力,通过与环境交互和奖励信号学习最优策略。适应性强,能自主探索,挖掘出惊人策略。应用包括策略、动作和竞速游戏,如AlphaGo。Python是实现强化学习的常用工具。尽管面临训练时间长和环境复杂性等挑战,但未来强化学习将与其他技术融合,推动游戏AI发展,创造更智能的游戏体验。
|
9天前
|
人工智能 NoSQL 安全
MongoDB观点:让生成式AI成为业务增长的新动能,游戏公司可以这样做
生成式AI技术将深刻地改变人们的生活和企业运营方式
|
9天前
|
人工智能 决策智能 C++
【AI Agent教程】【MetaGPT】案例拆解:使用MetaGPT实现“狼人杀“游戏(1)- 整体框架解析
【AI Agent教程】【MetaGPT】案例拆解:使用MetaGPT实现“狼人杀“游戏(1)- 整体框架解析
177 1
|
9天前
|
人工智能 决策智能
【AI Agent系列】【MetaGPT多智能体学习】6. 多智能体实战 - 基于MetaGPT实现游戏【你说我猜】(附完整代码)
【AI Agent系列】【MetaGPT多智能体学习】6. 多智能体实战 - 基于MetaGPT实现游戏【你说我猜】(附完整代码)
51 0
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
|
9天前
|
机器学习/深度学习 数据采集 人工智能
|
9天前
|
机器学习/深度学习 人工智能 监控
AI行为分析
**AI行为分析融合视觉技术,自动监测与理解人类及动物行为。在教育中,它监控课堂行为,提升教学质量;在安防领域,确保公共安全,预警异常事件;科研中,助力动物行为研究,推动神经科学探索。技术进步正拓宽其应用边界,强化安全管理与决策支持。**
32 6

热门文章

最新文章