Java模拟读取本地数据到Flink集成的Kafka并消费数据

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
简介: Java模拟读取本地数据到Flink集成的Kafka并消费数据

1.java实现读取本地数据到kafka生产数据


/**
 * Created by 王一宁 on 2019/11/6.
 */
public class kafkaProducer {
    public static void main(String[] args) throws Exception{
        Properties prop = new Properties();
        //指定kafka broker地址
        prop.put("bootstrap.servers", "hadoop1:9092");
        //指定key value的序列化方式
        prop.put("key.serializer", StringSerializer.class.getName());
        prop.put("value.serializer", StringSerializer.class.getName());
        //指定topic名称
        String topic = "wang";
        //创建producer链接
        KafkaProducer<String, String> producer = new KafkaProducer<String,String>(prop);
        //创建Java IO
        InputStream file = new FileInputStream("D:\\APP\\IDEA\\workplace\\FlinkTurbineFaultDiagnosis\\src\\main\\resources\\turbine\\GW20000120160101.txt");
        InputStreamReader fileInputStream = new InputStreamReader(file);
        BufferedReader reader = new BufferedReader(fileInputStream);
        String line = null;
        while ((line = reader.readLine()) != null) {
            //生产消息
            producer.send(new ProducerRecord<String, String>(topic,line));
            Thread.sleep(1000);
        }
        reader.close();
        file.close();
        fileInputStream.close();
        //关闭链接
        producer.close();
    }
}

2.在linux服务器中,直接开启一个消费者,就可以看到生产的数据了,或者手写一个java消费者,消费同一个Topic的数据。

3.java实现flink集成kafka消费者的实现代码


/**
 * 消费Kafka中得数据
 * @author 王一宁
 * @date 2020/1/2 12:12
 */
public class StreamingFromKafka {
    public static void main(String[] args) throws Exception{
        //获取环境
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        //kafka配置
        String topic = "wang";
        Properties prop = new Properties();
        prop.setProperty("bootstrap.servers","hadoop1:9092");//多个的话可以指定
        prop.setProperty("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
        prop.setProperty("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
        prop.setProperty("auto.offset.reset","latest");
        prop.setProperty("group.id","consumer1");
        FlinkKafkaConsumer010<String> myConsumer = new FlinkKafkaConsumer010<String>(topic, new SimpleStringSchema(), prop);
        //获取数据
        DataStream<String> text = env.addSource(myConsumer);
        //打印
        text.print().setParallelism(1);
        //执行
        //env.execute("StreamingFormCollection");
        env.execute();
    }
}


目录
相关文章
|
1月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
314 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
消息中间件 存储 传感器
193 0
|
3月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
本文整理自阿里云的高级技术专家、Apache Flink PMC 成员李麟老师在 Flink Forward Asia 2025 新加坡[1]站 —— 实时 AI 专场中的分享。将带来关于 Flink 2.1 版本中 SQL 在实时数据处理和 AI 方面进展的话题。
277 0
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
|
3月前
|
SQL 人工智能 JSON
Flink 2.1 SQL:解锁实时数据与AI集成,实现可扩展流处理
简介:本文整理自阿里云高级技术专家李麟在Flink Forward Asia 2025新加坡站的分享,介绍了Flink 2.1 SQL在实时数据处理与AI融合方面的关键进展,包括AI函数集成、Join优化及未来发展方向,助力构建高效实时AI管道。
770 43
|
3月前
|
SQL 关系型数据库 Apache
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
本文将深入解析 Flink-Doris-Connector 三大典型场景中的设计与实现,并结合 Flink CDC 详细介绍了整库同步的解决方案,助力构建更加高效、稳定的实时数据处理体系。
1667 0
从 Flink 到 Doris 的实时数据写入实践 —— 基于 Flink CDC 构建更实时高效的数据集成链路
|
3月前
|
机器学习/深度学习 SQL 大数据
什么是数据集成?和数据融合有什么区别?
在大数据领域,“数据集成”与“数据融合”常被混淆。数据集成关注数据的物理集中,解决“数据从哪来”的问题;数据融合则侧重逻辑协同,解决“数据怎么用”的问题。两者相辅相成,集成是基础,融合是价值提升的关键。理解其差异,有助于企业释放数据潜力,避免“数据堆积”或“盲目融合”的误区,实现数据从成本到生产力的转变。
什么是数据集成?和数据融合有什么区别?
|
4月前
|
存储 消息中间件 搜索推荐
京东零售基于Flink的推荐系统智能数据体系
摘要:本文整理自京东零售技术专家张颖老师,在 Flink Forward Asia 2024 生产实践(二)专场中的分享,介绍了基于Flink构建的推荐系统数据,以及Flink智能体系带来的智能服务功能。内容分为以下六个部分: 推荐系统架构 索引 样本 特征 可解释 指标 Tips:关注「公众号」回复 FFA 2024 查看会后资料~
330 1
京东零售基于Flink的推荐系统智能数据体系
|
5月前
|
运维 安全 数据管理
Dataphin V5.1 企业级发布:全球数据无缝集成,指标管理全新升级!
企业数据管理难题?Dataphin 5.1版来解决!聚焦跨云数据、研发效率、指标管理和平台运维四大场景,助力数据团队轻松应对挑战。无论是统一指标标准、快速定位问题,还是提升管理安全性,Dataphin都能提供强大支持。3分钟了解新版本亮点,让数据治理更高效!
104 0
|
5月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
6月前
|
消息中间件 运维 Kafka
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
直播预告|Kafka+Flink 双引擎实战:手把手带你搭建分布式实时分析平台!
223 13