python自动化测试工程师面试题

简介: python自动化测试工程师面试题

前言

本篇继续收集一些常见的python笔试题,以基础知识为主,递归是面试最喜欢考的一个问题,不管是做开发还是测试,都无法避免考递归。本篇结合实际案例,讲下几种关于递归的场景。

计算n的阶乘

计算n!,例如n=3(计算321=6), 求10!

方法1:可以用python里面的reduce函数,reduce() 函数会对参数序列中元素进行累积。

函数将一个数据集合(链表,元组等)中的所有数据进行下列操作:用传给 reduce 中的函数 function(有两个参数)先对集合中的第 1、2 个元素进行操作,得到的结果再与第三个数据用 function 函数运算,最后得到一个结果。

from functools import reduce

# 方法1:推荐!

a=10b=reduce(lambdax, y: x*y, range(1, a+1))
print(b)

image.gif

如果不想用lamdba函数,可以定义一个函数

fromfunctoolsimportreducedefchengfa(x, y):
returnx*ya=10b=reduce(chengfa, range(1, a+1))
print(b)

image.gif


方法2:自己写个递归函数

defdigui(n):
ifn==1:
return1else:
returnn*digui(n-1)
a=10print(digui(a))

image.gif

方法3:用for循环(不推荐!)

方法3:用for循环(不推荐!)a=10s=1foriinrange(1, a+1):
s=s*iprint(s)

image.gif

斐波那契数列

已知一个数列:1、1、2、3、5、8、13、。。。。的规律为从3开始的每一项都等于其前两项的和,这是斐波那契数列。求满足规律的100以内的所以数据

a=0b=1whileb<100:
print(b, end=",")
a, b=b, a+b

image.gif

幂的递归

计算x的n次方,如:3的4次方 为3*3*3*3=81

defmi(x, n):
'''计算x 的n 次方'''ifn==0:
return1else:
returnx*mi(x, n-1)
x=3num=4print(mi(x, num))

image.gif


汉诺塔问题

汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘

当只有一个盘子的时候,只需要从将A塔上的一个盘子移到C塔上。

当A塔上有两个盘子是,先将A塔上的1号盘子(编号从上到下)移动到B塔上,再将A塔上的2号盘子移动的C塔上,最后将B塔上的小盘子移动到C塔上。

当A塔上有3个盘子时,先将A塔上编号1至2的盘子(共2个)移动到B塔上(需借助C塔),然后将A塔上的3号最大的盘子移动到C塔,最后将B塔上的两个盘子借助A塔移动到C塔上。

当A塔上有n个盘子是,先将A塔上编号1至n-1的盘子(共n-1个)移动到B塔上(借助C塔),然后将A塔上最大的n号盘子移动到C塔上,最后将B塔上的n-1个盘子借助A塔移动到C塔上。

综上所述,除了只有一个盘子时不需要借助其他塔外,其余情况均一样(只是事件的复杂程度不一样)。

defhanoi(n, a, b, c):
'''汉诺塔问题'''ifn==1:
print(a, '-->', c)
else:
hanoi(n-1, a, c, b)
print(a, '-->', c)
hanoi(n-1, b, a, c)
hanoi(5, 'A', 'B', 'C')

image.gif

一般汉诺塔问题不会经常考,前面几个考的比较频繁


目录
相关文章
|
3月前
|
Web App开发 存储 前端开发
Python+Selenium自动化爬取携程动态加载游记
Python+Selenium自动化爬取携程动态加载游记
|
6月前
|
机器学习/深度学习 数据采集 API
Python自动化解决滑块验证码的最佳实践
Python自动化解决滑块验证码的最佳实践
|
3月前
|
数据采集 人工智能 API
推荐一款Python开源的AI自动化工具:Browser Use
Browser Use 是一款基于 Python 的开源 AI 自动化工具,融合大型语言模型与浏览器自动化技术,支持网页导航、数据抓取、智能决策等操作,适用于测试、爬虫、信息提取等多种场景。
640 4
推荐一款Python开源的AI自动化工具:Browser Use
|
3月前
|
数据采集 存储 监控
Python爬虫自动化:定时监控快手热门话题
Python爬虫自动化:定时监控快手热门话题
|
3月前
|
安全 数据库 数据安全/隐私保护
Python办公自动化实战:手把手教你打造智能邮件发送工具
本文介绍如何使用Python的smtplib和email库构建智能邮件系统,支持图文混排、多附件及多收件人邮件自动发送。通过实战案例与代码详解,帮助读者快速实现办公场景中的邮件自动化需求。
278 0
|
5月前
|
数据采集 存储 前端开发
Python爬虫自动化:批量抓取网页中的A链接
Python爬虫自动化:批量抓取网页中的A链接
|
4月前
|
测试技术 Python
Python接口自动化测试中Mock服务的实施。
总结一下,Mock服务在接口自动化测试中的应用,可以让我们拥有更高的灵活度。而Python的 `unittest.mock`库为我们提供强大的支持。只要我们正确使用Mock服务,那么在任何情况下,无论是接口是否可用,都可以进行准确有效的测试。这样,就大大提高了自动化测试的稳定性和可靠性。
189 0
|
6月前
|
JSON API 开发者
python实战 | 如何利用海外代理IP,实现Facebook内容营销自动化
本文探讨了Facebook营销自动化中的挑战与解决方案。首先分析了账号风控、IP受限及手动操作效率低等问题,随后介绍了通过Python编程结合高质量海外代理IP(如青果网络)实现自动化的技术路径。内容涵盖环境配置、代理IP使用、Facebook开发者账号注册及两种自动化方法:Graph API动态发布与Selenium模拟用户操作。最后总结指出,该方案可扩展至其他平台,助力全球矩阵营销。
python实战 | 如何利用海外代理IP,实现Facebook内容营销自动化
|
7月前
|
机器学习/深度学习 设计模式 测试技术
Python 高级编程与实战:构建自动化测试框架
本文深入探讨了Python中的自动化测试框架,包括unittest、pytest和nose2,并通过实战项目帮助读者掌握这些技术。文中详细介绍了各框架的基本用法和示例代码,助力开发者快速验证代码正确性,减少手动测试工作量。学习资源推荐包括Python官方文档及Real Python等网站。
|
8月前
|
存储 数据采集 数据格式
Python自动化Office文档处理全攻略
本文介绍如何使用Python自动化处理Word、Excel和PDF文档,提升办公效率。通过安装`python-docx`、`openpyxl`、`pandas`、`PyPDF2`和`pdfplumber`等库,可以轻松实现读取、修改、创建和批量处理这些文档。具体包括:自动化处理Word文档(如读取、修改内容、调整样式),Excel文档(如读取、清洗、汇总数据),以及PDF文档(如提取文本和表格数据)。结合代码示例和实战案例,帮助你掌握高效办公技巧,减少手动操作的错误率。
438 1

推荐镜像

更多