【笔记】用户指南—诊断与优化——性能趋势

本文涉及的产品
云原生数据库 PolarDB 分布式版,标准版 2核8GB
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 本文介绍了PolarDB-X性能趋势的查看方式。 PolarDB-X集成DAS的性能趋势功能,提供计算节点(CN)、存储节点(DN)、GMS节点的监控指标查看能力。同时支持多种查看性能趋势方式,不仅支持性能趋势区间查看,也支持性能趋势对比查看和自定义性能趋势查看。

性能趋势查看

  1. 登录云原生分布式数据库控制台
  2. 实例列表页,单击PolarDB-X 2.0页签。
  3. 在页面左上角选择目标实例所在地域。
  4. 找到目标实例,单击实例ID。
  5. 在左侧导航栏中,单击诊断与优化 > 性能趋势8.png单击页面上的页签分别查看计算节点(CN)、存储节点(DN)和GMS节点的监控指标。具体指标请参见性能指标说明
  1. 节点列表展示了节点的规格和CPU使用率、内存使用率等。
  2. 单击性能趋势页签,选择节点和时间范围,单击查看,可查看相关性能趋势图表。
  3. 单击性能趋势对比查看页签。设置任意两个时间段,单击查看可查看时间段内的性能对比趋势图表。
  4. 单击自定义性能趋势页签,您可以根据业务需要,自定义多个性能监控大盘,将需要的多个性能监控指标在同一个图标中进行展示,便于问题排查和分析。
    说明 如果您是首次使用,需要先创建监控大盘,详情可参见 监控大盘

执行性能诊断

除了性能趋势查看外,在任意节点的趋势图上, 按住鼠标拖动选择一段时间, 即可针对该节点在这段时间范围内的资源利用率,慢SQL状况进行诊断。


说明 目前仅计算节点和存储节点支持性能诊断,GMS节点不支持。

  1. 登录云原生分布式数据库控制台
  2. 实例列表页,单击PolarDB-X 2.0页签。
  3. 在页面左上角选择目标实例所在地域。
  4. 找到目标实例,单击实例ID。
  5. 在左侧导航栏中,单击诊断与优化 > 性能趋势
  6. 在任意节点的趋势图上, 按住鼠标拖动选择一段时间,点击诊断按钮。9.png
  7. 在诊断详情页待诊断任务完成即可查看资源利用率和慢SQL的异常情况。10.png

性能指标说明

计算节点

指标 单位 含义
polardbx.cpu_usage % CPU使用率的平均值。
polardbx.mem_usage % JVM的内存使用率,内存使用率波动属于正常现象。
polardbx.active_connection Count 连接总数。
polardbx.running_thread Count 活跃连接总数。
polardbx.network_in_bytes Byte 网络输入流量的总和。
polardbx.network_out_bytes Byte 网络输出流量的总和。
polardbx.logic_qps Per Second 每秒处理的逻辑SQL语句数目的总和。
polardbx.physical_qps Per Second 每秒处理的物理SQL语句数目的总和。
polardbx.logic_rt Ms 逻辑SQL平均响应时间。
polardbx.physical_rt Ms 物理SQL平均响应时间。
polardbx.slow_request_count Per Second 逻辑慢SQL数量。
polardbx.physical_slow_reuquest_count Per Second 物理慢SQL数量。

存储节点与GMS节点

指标 单位 含义
mysql.tps Per Second 每秒事务数。
mysql.qps Per Second 每秒请求数。
mysql.total_session Count 当前全部会话。
mysql.active_session Count 当前活跃会话。
mysql.bytes_received KByte 平均每秒从所有客户端接收到的字节数。
mysql.bytes_sent KByte 平均每秒发送给所有客户端的字节数。
mysql.tb.tmp.disk Count MySQL执行语句时在硬盘上自动创建的临时表的数量。
mysql.insert_ps Per Second 平均每秒insert语句执行次数。
mysql.select_ps Per Second 平均每秒select语句执行次数。
mysql.update_ps Per Second 平均每秒update语句执行次数。
mysql.delete_ps Per Second 平均每秒delete语句执行次数。
mysql.replace_ps Per Second 平均每秒replace语句执行次数。
mysql.innodb_data_written KByte InnoDB平均每秒写字节数。
mysql.innodb_data_read KByte InnoDB平均每秒读字节数。
mysql.innodb_buffer_pool_reads_requests Count InnoDB平均每秒从Buffer Pool读取页的次数(逻辑读)。
mysql.innodb_bp_dirty_pct % InnoDB Buffer Pool脏页比率,计算公式:Innodb_buffer_pool_pages_dirty / Innodb_buffer_pool_pages_data 100%。
mysql.innodb_bp_hit % InnoDB Buffer Pool读缓存命中率,计算公式:(Innodb_buffer_pool_read_requests - Innodb_buffer_pool_reads) /Innodb_buffer_pool_read_requests 100%。
mysql.innodb_bp_usage_pct % InnoDB Buffer Pool使用率,计算公式:innodb_buffer_pool_pages_data / ( innodb_buffer_pool_pages_data +innodb_buffer_pool_pages_free ) * 100%。
mysql.innodb_log_writes Per Second Innodb平均每秒物理写Redo Log File次数。
mysql.innodb_os_log_fsyncs Per Second 平均每秒向日志文件完成的fsync()写数量。
mysql.innodb_rows_deleted Per Second InnoDB平均每秒删除的行数。
mysql.innodb_rows_read Per Second InnoDB平均每秒读取的行数。
mysql.innodb_rows_inserted Per Second InnoDB平均每秒插入的行数。
mysql.innodb_rows_updated Per Second InnoDB平均每秒更新的行数。
mysql.mem_usage % MySQL实例内存使用率(占操作系统总数)。
mysql.cpu_usage % MySQL服务进程CPU使用率(阿里云数据库最高100%)。
mysql.data.size MByte 数据空间。
mysql.tmp.size MByte 临时表空间。
mysql.other.size MByte 系统空间。
mysql.instance.size MByte MySQL实例总空间使用量。
mysql.log.size MByte 日志空间。
mysql.iops Count MySQL读写次数。
相关文章
|
安全 Linux 测试技术
|
前端开发 Go 网络安全
Go语言:xterm.js-websocket Web终端堡垒机
1.前言 因为公司业务需要在自己的私有云服务器上添加添加WebSsh终端,同时提供输入命令审计功能. 从google上可以了解到xterm.js是一个非常出色的web终端库,包括VSCode很多成熟的产品都使用这个前端库.
7145 0
|
jenkins 持续交付
Jenkins 管理界面里提示“反向代理设置有误“的问题解决办法
Jenkins 管理界面里提示“反向代理设置有误“的问题解决办法
2027 0
Jenkins 管理界面里提示“反向代理设置有误“的问题解决办法
|
机器学习/深度学习 人工智能 编解码
AI生成壁纸的工作原理
AI生成壁纸基于深度学习和生成对抗网络(GANs),通过生成器与判别器的对抗学习,以及条件生成对抗网络(CGANs)来创造特定风格的壁纸。技术还包括风格迁移、深度卷积生成对抗网络(DCGAN)、潜在空间扩展和自注意力机制。审美评价机制的引入确保了生成的壁纸既符合技术标准又有艺术价值。CGANs能根据用户条件生成个性化壁纸,而风格迁移技术通过多种方法实现图像风格转换。DCGAN和其他GAN变体在处理图像数据时有优势,如高质量样本生成和特征学习,但也存在图像质量、训练效率和模式崩溃等问题。通过构建审美评估模型和使用XAI技术,AI在生成壁纸时能更好地平衡技术与艺术标准。
|
机器学习/深度学习 数据采集 人工智能
【AI 初识】机器学习中维度的诅咒是什么?
【5月更文挑战第2天】【AI 初识】机器学习中维度的诅咒是什么?
|
运维 监控 安全
【软件设计师备考 专题 】系统运行和维护:确保系统的稳定和高效
【软件设计师备考 专题 】系统运行和维护:确保系统的稳定和高效
1107 0
|
人工智能 安全 API
【LangChain系列】第十篇:数据保护简介及实践
【5月更文挑战第24天】本文探讨了在使用大型语言模型时保护个人数据的重要性,特别是涉及敏感信息如PII(个人可识别信息)的情况。为了降低数据泄露风险,文章介绍了数据匿名化的概念,通过在数据进入LLM前替换敏感信息。重点讲解了Microsoft的Presidio库,它提供了一个可定制的文本匿名化工具。此外,文章还展示了如何结合LangChain库创建一个安全的匿名化流水线,包括初始化匿名器、添加自定义识别器和操作符,以及在问答系统中集成匿名化流程。通过这种方式,可以在利用LLMs的同时保护数据隐私。
493 0
|
关系型数据库 MySQL PHP
MySQL 随机获得一条数据的方法
MySQL 随机获得一条数据的方法
1715 0
|
开发框架 Kubernetes Cloud Native
|
JSON 编解码 Java
小白一看就会的Spring的RestTemplate的使用
您好,我是码农飞哥,感谢您阅读此文。作为一名Java开发者,我们怎么都绕不开调用外部接口的场景,调用的方式要么是通过Http协议来调用,要么是通过RPC协议来调用,通过Http协议调用的话我们就需要用到Http的Api。比较常用的有Apache的HttpClient和原生的HttpURLConnection。这些Api都比较好用,但是我们今天要介绍一种更加好用API,Spring自带的RestTemplate,能力更强,使用更方便。
817 0
小白一看就会的Spring的RestTemplate的使用