动态内存管理-C语言

简介: 动态内存管理-C语言

1. 为什么存在动态内存分配


int val = 20;//在栈空间上开辟四个字节

char arr[10] = {0};//在栈空间上开辟10个字节的连续空间


但是上述的开辟空间的方式有两个特点:

1. 空间开辟大小是固定的。

2. 数组在申明的时候,必须指定数组的长度,它所需要的内存在编译时分配。


但是对于空间的需求,不仅仅是上述的情况。有时候我们需要的空间大小在程序运行的时候才能知道,那数组的编译时开辟空间的方式就不能满足了。这时候就只能试试动态内存开辟了。


2. 动态内存函数的介绍


2.1 malloc和free


C语言提供了一个动态内存开辟的函数:void* malloc (size_t size);


这个函数向内存申请一块连续可用的空间,并返回指向这块空间的指针。

如果开辟成功,则返回一个指向开辟好空间的指针。

如果开辟失败,则返回一个NULL指针,因此malloc的返回值一定要做检查。

返回值的类型是void* ,所以malloc函数并不知道开辟空间的类型,具体在使用的时候使用者自己

来决定。

如果参数size 为0,malloc的行为是标准是未定义的,取决于编译器。


C语言提供了另外一个函数free,专门是用来做动态内存的释放和回收的,函数原型如下:

void free (void* ptr);


free函数用来释放动态开辟的内存。

如果参数ptr 指向的空间不是动态开辟的,那free函数的行为是未定义的。

如果参数ptr 是NULL指针,则函数什么事都不做。


malloc和free都声明在stdlib.h 头文件中。

举个例子:

#include <stdio.h>
int main()
{
//代码1
    int num = 0;
    scanf("%d", &num);
    int arr[num] = {0};
//代码2
    int* ptr = NULL;
    ptr = (int*)malloc(num*sizeof(int));
    if(NULL != ptr)//判断ptr指针是否为空
{
    int i = 0;
for(i=0; i<num; i++)
{
    *(ptr+i) = 0;
}
}
 free(ptr);//释放ptr所指向的动态内存
 ptr = NULL;//必须设置为空,不然就是野指针
 return 0;
}


2.2 calloc


C语言还提供了一个函数叫calloc , calloc 函数也用来动态内存分配。原型如下:

void* calloc (size_t num, size_t size);

函数的功能是为num 个大小为size 的元素开辟一块空间,并且把空间的每个字节初始化为0。

与函数malloc 的区别只在于calloc 会在返回地址之前把申请的空间的每个字节初始化为全0。

举个例子:

#include <stdio.h>
#include <stdlib.h>
int main()
{
     int *p = (int*)calloc(10, sizeof(int));
     if(NULL != p)
     {
     //使用空间
      }
    free(p);
    p = NULL;
   return 0;
}


2.3 realloc


realloc函数的出现让动态内存管理更加灵活。

有时会我们发现过去申请的空间太小了,有时候我们又会觉得申请的空间过大了,那为了合理的时

候内存,我们一定会对内存的大小做灵活的调整。那realloc 函数就可以做到对动态开辟内存大小

的调整。

函数原型如下:

void* realloc (void* ptr, size_t size);


ptr 是要调整的内存地址

size 调整之后新大小

返回值为调整之后的内存起始位置。

这个函数调整原内存空间大小的基础上,还会将原来内存中的数据移动到新的空间。

realloc在调整内存空间的是存在两种情况:

情况1:原有空间之后有足够大的空间         情况2:原有空间之后没有足够大的空间

1667907415723.jpg


情况1

当是情况1 的时候,要扩展内存就直接原有内存之后直接追加空间,原来空间的数据不发生变化。


情况2

当是情况2 的时候,原有空间之后没有足够多的空间时,扩展的方法是:在堆空间上另找一个合适大小的连续空间来使用。这样函数返回的是一个新的内存地址。


3. 常见的动态内存错误


3.1 对NULL指针的解引用操作


void test()
{
int *p = (int *)malloc(40);
*p = 20;//如果p的值是NULL,就会有问题
free(p);
}


3.2 对动态开辟空间的越界访问


void test()
{
     int i = 0;
     int *p = (int *)malloc(10*sizeof(int));
     if(NULL == p)
     {
     exit(EXIT_FAILURE);
     }
     for(i=0; i<=10; i++)
     {
     *(p+i) = i;//当i是10的时候越界访问
     }
     free(p);
}

3.3 对非动态开辟内存使用free释放


void test()
{
     int a = 10;
     int *p = &a;
     free(p);//ok?   因为此时a是在栈上开辟的,那么free只能释放malloc free  calloc   realloc在堆上开辟的空间
}


3.4 使用free释放一块动态开辟内存的一部分


void test()
{
     int *p = (int *)malloc(100);
     p++;
     free(p);//p不再指向动态内存的起始位置,释放时P只能指向起始位置地址
}
3.5 对同一块动态内存多次释放 
void test()
{
      int *p = (int *)malloc(100);
      free(p);
      free(p);//重复释放
}


3.5 动态开辟内存忘记释放(内存泄漏)


void test()
{
     int *p = (int *)malloc(100);
     if(NULL != p)
     {
    *p = 20;
     }
}
int main()
{
    test();
    return 0;
}

忘记释放不再使用的动态开辟的空间会造成内存泄漏。

切记:动态开辟的空间一定要释放,并且正确释放。


4. 几个经典的笔试题

题目1:


void GetMemory(char *p)
{
     p = (char *)malloc(100);
}
void Test(void)
{
     char *str = NULL;
     GetMemory(str);
     strcpy(str, "hello world");
     printf(str);
}


注意:形参不会改变实参。


题目2:

char *GetMemory(void)
{
     char p[] = "hello world";
     return p;
}
void Test(void)
{
     char *str = NULL;
     str = GetMemory();
     printf(str);
}

注意:局部变量出了函数之后就会被销毁,虽然返回了地址,但是此时指向的内容已经被销毁了,所以此时str为野指针。


题目3:

void GetMemory(char **p, int num)
{
     *p = (char *)malloc(num);
}
void Test(void)
{
     char *str = NULL;
     GetMemory(&str, 100);
     strcpy(str, "hello");
     printf(str);
}

注意:此时整个函数调用过程正确,但是用malloc开辟空间之后要进行释放,所以此时会造成内存泄漏。


题目4:

void Test(void)
{
     char *str = (char *) malloc(100);
     strcpy(str, "hello");
     free(str);
     if(str != NULL)
     {
       strcpy(str, "world");
       printf(str);
     }
}

注意:虽然此时已经进行了内存释放,但是后面进行了strcpy操作,此时str为野指针。


相关文章
|
3月前
|
存储 编译器 程序员
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
在C语言中,内存布局是程序运行时非常重要的概念。内存布局直接影响程序的性能、稳定性和安全性。理解C程序的内存布局,有助于编写更高效和可靠的代码。本文将详细介绍C程序的内存布局,包括代码段、数据段、堆、栈等部分,并提供相关的示例和应用。
85 5
【C语言】内存布局大揭秘 ! -《堆、栈和你从未听说过的内存角落》
|
3月前
|
存储 缓存 算法
【C语言】内存管理函数详细讲解
在C语言编程中,内存管理是至关重要的。动态内存分配函数允许程序在运行时请求和释放内存,这对于处理不确定大小的数据结构至关重要。以下是C语言内存管理函数的详细讲解,包括每个函数的功能、标准格式、示例代码、代码解释及其输出。
135 6
|
4月前
|
传感器 人工智能 物联网
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发
C 语言在计算机科学中尤其在硬件交互方面占据重要地位。本文探讨了 C 语言与硬件交互的主要方法,包括直接访问硬件寄存器、中断处理、I/O 端口操作、内存映射 I/O 和设备驱动程序开发,以及面临的挑战和未来趋势,旨在帮助读者深入了解并掌握这些关键技术。
103 6
|
4月前
|
存储 C语言
C语言如何使用结构体和指针来操作动态分配的内存
在C语言中,通过定义结构体并使用指向该结构体的指针,可以对动态分配的内存进行操作。首先利用 `malloc` 或 `calloc` 分配内存,然后通过指针访问和修改结构体成员,最后用 `free` 释放内存,实现资源的有效管理。
344 13
|
4月前
|
存储 C语言 开发者
C 语言指针与内存管理
C语言中的指针与内存管理是编程的核心概念。指针用于存储变量的内存地址,实现数据的间接访问和操作;内存管理涉及动态分配(如malloc、free函数)和释放内存,确保程序高效运行并避免内存泄漏。掌握这两者对于编写高质量的C语言程序至关重要。
113 11
|
4月前
|
存储 算法 程序员
C 语言指针详解 —— 内存操控的魔法棒
《C 语言指针详解》深入浅出地讲解了指针的概念、使用方法及其在内存操作中的重要作用,被誉为程序员手中的“内存操控魔法棒”。本书适合C语言初学者及希望深化理解指针机制的开发者阅读。
|
4月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
107 1
|
4月前
|
存储 C语言 计算机视觉
在C语言中指针数组和数组指针在动态内存分配中的应用
在C语言中,指针数组和数组指针均可用于动态内存分配。指针数组是数组的每个元素都是指针,可用于指向多个动态分配的内存块;数组指针则指向一个数组,可动态分配和管理大型数据结构。两者结合使用,灵活高效地管理内存。
|
4月前
|
C语言
【c语言】动态内存管理
本文介绍了C语言中的动态内存管理,包括其必要性及相关的四个函数:`malloc`、``calloc``、`realloc`和`free`。`malloc`用于申请内存,`calloc`申请并初始化内存,`realloc`调整内存大小,`free`释放内存。文章还列举了常见的动态内存管理错误,如空指针解引用、越界访问、错误释放等,并提供了示例代码帮助理解。
82 3
|
5月前
|
编译器 程序员 C语言
深入C语言:动态内存管理魔法
深入C语言:动态内存管理魔法