1、引言
接着上一篇《深聊性能测试,从入门到放弃之:性能测试如何做》,这篇我们看看,到底做到那几点,架构师也对我刮目相看。
我的都知道,普通BS架构的系统,一般都采用测试工具(如LR)直接录制手工操作的方式进行测试。
这种方式简单有效,对测试人员要求不高。但在一些情况下,这种基于录制的方法可能无法完成,比如页面上有特殊控件、系统是CS架构、或者通讯的协议无法捕获等。
这时就需要更复杂的测试方法,如手动编写模拟客户端的JAVA代码,而把测试工具当作一个调度控制台,去调度大量的虚拟用户线程执行编写好的代码。
2、 执行步骤
举例
现在假设有一个简易版的12306网站,JAVA实现,中间件为TOMCAT,数据库为SYBASE,没有集群处理(一切从简,只有查询和订票功能)。如何对它进行性能测试呢?
接着往下看。
2.1 测试确认
数据量并发,数据也应该是海量的,但基本都是简单查询,没有复杂的统计,所以主要困难还是在海量并发事务的处理上。
中间件、数据库上都会承受巨大压力。此类高并发系统还需要对一些功能特别注意,比如一个车次有10张票,5个人同时购票,如何处理?如果是12个人同时点购票,又是如何处理?
2.2 通过标准
无非是系统能够满足多少人同时在线,一分钟内能处理多少订单,用户最大等待时间是几分钟。注意这个标准一定要是经过各方面确认过实际可行的啊,定一个订单响应时间不超过5秒有意义么?确认了以后,就要按照这个目标来设计测试和执行。
另一个需要注意的问题,按照预期的压力测试通过了以后,是不是就高枕无忧了?答案是否定的,因为很可能这个预期或者标准是不合理的。这个是非常可能的,只有长期的数据积累,才会一点点走向精确。
想想奥运订票系统,开通后短短五分钟,网站就瘫痪了,你们以为这种系统没有经过专业的性能测试么?据我所知,奥运订票系统性能测试时制定的标准是每分钟处理四百万访问,出事后的检查发现,每分钟的访问量超过了八百万。这种事故责任在谁呢?
测试机构敢拍胸脯保证,每分钟处理四百万就是没问题的。而奥组委自己设定的每分钟四百万目标,和实际出现偏差也是正常的,毕竟这种系统是第一次上线。最后的处理方法就是,压力达到了预期最大值以后,再后来的访问就被排队了。好好体会这个案例吧,会有收获的。
2.3 测试设计
设计用户模型,设计测试场景,设计测试用例。一个典型的用户是如何使用系统的?登录、查询车次余票、订票、付款,这是理想化的情况。
实际更可能是这样的,登录(一次登不进去,重复多次)、查询A车次(未到放票时间、不断重试,时间到无票)、查询B车次(无票)、查询C车次(有票)、订票、付款、查询订单。两种交互方式对系统产生的压力,差别是很大的。
将多个用户行动整合到一起,也就是用户模型,或者叫系统使用模型,是压力场景设计的依据。假设系统一天的访问量是一万个用户,这一万访问量是在24小时内平均分布的,还是分布在8小时内,还是在某一时间点上集中访问?这些具体到用例中也就是虚拟用户的加载策略,直接决定了压力的大小。
除了这个压力场景,针对此系统还需要进行绝对并发测试,参考第一步的分析。
2.4 数据准备
压力测试最繁琐的最夸张最麻烦的就是数据准备,环境准备,针对大量用户的并发进行一些预调优。
2.5 处理问题
比如1000人的压力下,系统响应就比较慢了,查询车次需要1分钟,下订单需要2分钟,接下来要做什么?能把这些作为一个性能缺陷提起么?显然是不可以的,这只是通过你的压力测试场景产生的一个现象,可能是测试脚本有问题、也可能是测试环境有问题。作为一个性能测试人员,需要尽量深入的定位到问题产生的原因。
就像这个响应慢,只是一个表面现象,慢在哪?是中间件还是数据库?一些简单的测试方法就可以进行判断,如在页面上进行一些数据库无关的操作,如果依然比较慢,说明在中间件上压力就已经比较大了。
还可以部署另一套中间件测试环境,连接之前相同的数据库,在压力测试出现问题的同时,手动访问新部署的应用(只有一个用户),如果同样很慢,那说明慢在了数据库端的处理上。还可以通过日志的方式更准确的进行判断,如应用日志和数据库SQL执行日志。总之方法是多种多样的,但目的只有一个,就是不断的排除无关部分、缩小问题范围,直到解决问题。
3、总结
还是那句话,对于测试来说,技术能力只能排在第二号,测试思想才是最根本的。
因为思想是根本,技术是辅助。
更多性能测试内容,请关注小鱼的博客
《性能测试基础到实战》从理论到实战,小鱼带着你一起飞~ ~