在区块链应用中,数字钱包装载的并不是数字货币,而是密钥(私钥和公钥)。
数字钱包中包含成对的私钥和公钥,公钥用于交易转账,私钥用于签名和解密。
拥有了密钥相当于拥有相应地址上数字货币的支配权。
在开发流程中,我们通过钱包来创建随机私钥、公钥、以及一串用于交易的地址信息。这段地址信息可以用于接受他人转账的数字货币,以及把你所拥有的数字货币转账给其他人。
因此在我们开发智能合约之前,首先要先准备一个数字钱包。
使用浏览器插件钱包
在开发过程当中,最常用的是浏览器插件钱包。浏览器插件钱包配置简单,插件钱包的安装和使用都很便捷。此外,由于目前大多数区块链应用都是网页的,因此通过浏览器钱包可以轻松访问目前主流的所有 Defi 和 NFT 应用。
部署参数:
例如:
name_: (名称)
symbol_: (符号)
totalSupply_: (发行量)
rewardAddr_: 要分红的代币合约,BSC常用代币地址在下方
marketingWalletAddr_: 自己的钱包
serviceAddr_: 0x333336b1f76404693a4bd3885170A0F9a807940F
buyFeeSetting_: [4,3,2,1] (分红、流动性、市场营销、燃烧)
sellFeeSetting_: [5,4,3,2] (分红、流动性、市场营销、燃烧)
tokenBalanceForReward_: 1000000000000000000000000000 (持有多少代币参与分红。数量后要加18个0)
编译/开源参数:
COMPILER: v0.8.7+commit.e28d00a7.js
Enable optimization: 开启并使用默认值200
Other Settings: default evmVersion, MIT license
// SPDX-License-Identifier: MIT
pragma solidity ^0.8.6;
interface IUniswapV2Pair {
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
event Transfer(address indexed from, address indexed to, uint256 value);
function name() external pure returns (string memory);
function symbol() external pure returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint256);
function balanceOf(address owner) external view returns (uint256);
function allowance(address owner, address spender)
external
view
returns (uint256);
function approve(address spender, uint256 value) external returns (bool);
function transfer(address to, uint256 value) external returns (bool);
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint256);
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
event Mint(address indexed sender, uint256 amount0, uint256 amount1);
event Burn(
address indexed sender,
uint256 amount0,
uint256 amount1,
address indexed to
);
event Swap(
address indexed sender,
uint256 amount0In,
uint256 amount1In,
uint256 amount0Out,
uint256 amount1Out,
address indexed to
);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint256);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves()
external
view
returns (
uint112 reserve0,
uint112 reserve1,
uint32 blockTimestampLast
);
function price0CumulativeLast() external view returns (uint256);
function price1CumulativeLast() external view returns (uint256);
function kLast() external view returns (uint256);
function mint(address to) external returns (uint256 liquidity);
function burn(address to)
external
returns (uint256 amount0, uint256 amount1);
function swap(
uint256 amount0Out,
uint256 amount1Out,
address to,
bytes calldata data
) external;
function skim(address to) external;
function sync() external;
function initialize(address, address) external;
}
interface IUniswapV2Factory {
event PairCreated(
address indexed token0,
address indexed token1,
address pair,
uint256
);
function feeTo() external view returns (address);
function feeToSetter() external view returns (address);
function getPair(address tokenA, address tokenB)
external
view
returns (address pair);
function allPairs(uint256) external view returns (address pair);
function allPairsLength() external view returns (uint256);
function createPair(address tokenA, address tokenB)
external
returns (address pair);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
}
interface IERC20 {
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
function decimals() external view returns (uint8);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `recipient`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address recipient, uint256 amount)
external
returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender)
external
view
returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
*
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `sender` to `recipient` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) external returns (bool);
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
}
contract Ownable {
address private _owner;
event OwnershipTransferred(
address indexed previousOwner,
address indexed newOwner
);
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes memory) {
this;
return msg.data;
}
constructor() {
address msgSender = _msgSender();
_owner = msgSender;
emit OwnershipTransferred(address(0), msgSender);
}
function owner() public view returns (address) {
return _owner;
}
modifier onlyOwner() {
require(_owner == _msgSender(), "Ownable: caller is not the owner");
_;
}
function renounceOwnership() public virtual onlyOwner {
emit OwnershipTransferred(_owner, address(0));
_owner = address(0);
}
function transferOwnership(address newOwner) public virtual onlyOwner {
require(
newOwner != address(0),
"Ownable: new owner is the zero address"
);
emit OwnershipTransferred(_owner, newOwner);
_owner = newOwner;
}
}
library Address {
function isContract(address account) internal view returns (bool) {
bytes32 codehash;
bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470;
// solhint-disable-next-line no-inline-assembly
assembly { codehash := extcodehash(account) }
return (codehash != 0x0 && codehash != accountHash);
}
}
contract UsdtWrap {
IERC20 public token520;
IERC20 public usdt;
constructor (IERC20 _token520) {
token520 = _token520;
usdt = IERC20(0x55d398326f99059fF775485246999027B3197955);
}
function withdraw() public {
uint256 usdtBalance = usdt.balanceOf(address(this));
if (usdtBalance > 0) {
usdt.transfer(address(token520), usdtBalance);
}
uint256 token520Balance = token520.balanceOf(address(this));
if (token520Balance > 0) {
token520.transfer(address(token520), token520Balance);
}
}
}
contract ERC20 is Ownable, IERC20 {
using SafeMath for uint256;
mapping(address => uint256) private _balances;
mapping(address => mapping(address => uint256)) private _allowances;
uint256 private _totalSupply;
string private _name;
string private _symbol;
/**
* @dev Sets the values for {name} and {symbol}.
*
* The default value of {decimals} is 18. To select a different value for
* {decimals} you should overload it.
*
* All two of these values are immutable: they can only be set once during
* construction.
*/
constructor(string memory name_, string memory symbol_) {
_name = name_;
_symbol = symbol_;
}
/**
* @dev Returns the name of the token.
*/
function name() public view virtual override returns (string memory) {
return _name;
}
/**
* @dev Returns the symbol of the token, usually a shorter version of the
* name.
*/
function symbol() public view virtual override returns (string memory) {
return _symbol;
}
/**
* @dev Returns the number of decimals used to get its user representation.
* For example, if `decimals` equals `2`, a balance of `505` tokens should
* be displayed to a user as `5,05` (`505 / 10 ** 2`).
*
* Tokens usually opt for a value of 18, imitating the relationship between
* Ether and Wei. This is the value {ERC20} uses, unless this function is
* overridden;
*
* NOTE: This information is only used for _display_ purposes: it in
* no way affects any of the arithmetic of the contract, including
* {IERC20-balanceOf} and {IERC20-transfer}.
*/
function decimals() public view virtual override returns (uint8) {
return 18;
}
/**
* @dev See {IERC20-totalSupply}.
*/
function totalSupply() public view virtual override returns (uint256) {
return _totalSupply;
}
/**
* @dev See {IERC20-balanceOf}.
*/
function balanceOf(address account) public view override returns (uint256) {
return _balances[account];
}
/**
* @dev See {IERC20-transfer}.
*
* Requirements:
*
* - `recipient` cannot be the zero address.
* - the caller must have a balance of at least `amount`.
*/
function transfer(address recipient, uint256 amount)
public
virtual
override
returns (bool)
{
_transfer(_msgSender(), recipient, amount);
return true;
}
/**
* @dev See {IERC20-allowance}.
*/
function allowance(address owner, address spender)
public
view
virtual
override
returns (uint256)
{
return _allowances[owner][spender];
}
/**
* @dev See {IERC20-approve}.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function approve(address spender, uint256 amount)
public
virtual
override
returns (bool)
{
_approve(_msgSender(), spender, amount);
return true;
}
/**
* @dev See {IERC20-transferFrom}.
*
* Emits an {Approval} event indicating the updated allowance. This is not
* required by the EIP. See the note at the beginning of {ERC20}.
*
* Requirements:
*
* - `sender` and `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
* - the caller must have allowance for ``sender``'s tokens of at least
* `amount`.
*/
function transferFrom(
address sender,
address recipient,
uint256 amount
) public virtual override returns (bool) {
_transfer(sender, recipient, amount);
_approve(
sender,
_msgSender(),
_allowances[sender][_msgSender()].sub(
amount,
"ERC20: transfer amount exceeds allowance"
)
);
return true;
}
/**
* @dev Atomically increases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
*/
function increaseAllowance(address spender, uint256 addedValue)
public
virtual
returns (bool)
{
_approve(
_msgSender(),
spender,
_allowances[_msgSender()][spender].add(addedValue)
);
return true;
}
/**
* @dev Atomically decreases the allowance granted to `spender` by the caller.
*
* This is an alternative to {approve} that can be used as a mitigation for
* problems described in {IERC20-approve}.
*
* Emits an {Approval} event indicating the updated allowance.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `spender` must have allowance for the caller of at least
* `subtractedValue`.
*/
function decreaseAllowance(address spender, uint256 subtractedValue)
public
virtual
returns (bool)
{
_approve(
_msgSender(),
spender,
_allowances[_msgSender()][spender].sub(
subtractedValue,
"ERC20: decreased allowance below zero"
)
);
return true;
}
/**
* @dev Moves tokens `amount` from `sender` to `recipient`.
*
* This is internal function is equivalent to {transfer}, and can be used to
* e.g. implement automatic token fees, slashing mechanisms, etc.
*
* Emits a {Transfer} event.
*
* Requirements:
*
* - `sender` cannot be the zero address.
* - `recipient` cannot be the zero address.
* - `sender` must have a balance of at least `amount`.
*/
function _transfer(
address sender,
address recipient,
uint256 amount
) internal virtual {
require(sender != address(0), "ERC20: transfer from the zero address");
require(recipient != address(0), "ERC20: transfer to the zero address");
_beforeTokenTransfer(sender, recipient, amount);
_transferToken(sender,recipient,amount);
}
function _transferToken(
address sender,
address recipient,
uint256 amount
) internal virtual {
_balances[sender] = _balances[sender].sub(
amount,
"ERC20: transfer amount exceeds balance"
);
_balances[recipient] = _balances[recipient].add(amount);
emit Transfer(sender, recipient, amount);
}
/** @dev Creates `amount` tokens and assigns them to `account`, increasing
* the total supply.
*
* Emits a {Transfer} event with `from` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function _mint(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: mint to the zero address");
_beforeTokenTransfer(address(0), account, amount);
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add(amount);
emit Transfer(address(0), account, amount);
}
/**
* @dev Destroys `amount` tokens from `account`, reducing the
* total supply.
*
* Emits a {Transfer} event with `to` set to the zero address.
*
* Requirements:
*
* - `account` cannot be the zero address.
* - `account` must have at least `amount` tokens.
*/
function _burn(address account, uint256 amount) internal virtual {
require(account != address(0), "ERC20: burn from the zero address");
_beforeTokenTransfer(account, address(0), amount);
_balances[account] = _balances[account].sub(
amount,
"ERC20: burn amount exceeds balance"
);
_totalSupply = _totalSupply.sub(amount);
emit Transfer(account, address(0), amount);
}
/**
* @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens.
*
* This internal function is equivalent to `approve`, and can be used to
* e.g. set automatic allowances for certain subsystems, etc.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `owner` cannot be the zero address.
* - `spender` cannot be the zero address.
*/
function _approve(
address owner,
address spender,
uint256 amount
) internal virtual {
require(owner != address(0), "ERC20: approve from the zero address");
require(spender != address(0), "ERC20: approve to the zero address");
_allowances[owner][spender] = amount;
emit Approval(owner, spender, amount);
}
/**
* @dev Hook that is called before any transfer of tokens. This includes
* minting and burning.
*
* Calling conditions:
*
* - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens
* will be to transferred to `to`.
* - when `from` is zero, `amount` tokens will be minted for `to`.
* - when `to` is zero, `amount` of ``from``'s tokens will be burned.
* - `from` and `to` are never both zero.
*
* To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks].
*/
function _beforeTokenTransfer(
address from,
address to,
uint256 amount
) internal virtual {}
}
library SafeMath {
/**
* @dev Returns the addition of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `+` operator.
*
* Requirements:
*
* - Addition cannot overflow.
*/
function add(uint256 a, uint256 b) internal pure returns (uint256) {
uint256 c = a + b;
require(c >= a, "SafeMath: addition overflow");
return c;
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(uint256 a, uint256 b) internal pure returns (uint256) {
return sub(a, b, "SafeMath: subtraction overflow");
}
/**
* @dev Returns the subtraction of two unsigned integers, reverting with custom message on
* overflow (when the result is negative).
*
* Counterpart to Solidity's `-` operator.
*
* Requirements:
*
* - Subtraction cannot overflow.
*/
function sub(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b <= a, errorMessage);
uint256 c = a - b;
return c;
}
/**
* @dev Returns the multiplication of two unsigned integers, reverting on
* overflow.
*
* Counterpart to Solidity's `*` operator.
*
* Requirements:
*
* - Multiplication cannot overflow.
*/
function mul(uint256 a, uint256 b) internal pure returns (uint256) {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See:
if (a == 0) {
return 0;
}
uint256 c = a * b;
require(c / a == b, "SafeMath: multiplication overflow");
return c;
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(uint256 a, uint256 b) internal pure returns (uint256) {
return div(a, b, "SafeMath: division by zero");
}
/**
* @dev Returns the integer division of two unsigned integers. Reverts with custom message on
* division by zero. The result is rounded towards zero.
*
* Counterpart to Solidity's `/` operator. Note: this function uses a
* `revert` opcode (which leaves remaining gas untouched) while Solidity
* uses an invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function div(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b > 0, errorMessage);
uint256 c = a / b;
// assert(a == b * c + a % b); // There is no case in which this doesn't hold
return c;
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(uint256 a, uint256 b) internal pure returns (uint256) {
return mod(a, b, "SafeMath: modulo by zero");
}
/**
* @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),
* Reverts with custom message when dividing by zero.
*
* Counterpart to Solidity's `%` operator. This function uses a `revert`
* opcode (which leaves remaining gas untouched) while Solidity uses an
* invalid opcode to revert (consuming all remaining gas).
*
* Requirements:
*
* - The divisor cannot be zero.
*/
function mod(
uint256 a,
uint256 b,
string memory errorMessage
) internal pure returns (uint256) {
require(b != 0, errorMessage);
return a % b;
}
}
interface IUniswapV2Router01 {
function factory() external pure returns (address);
function WETH() external pure returns (address);
function addLiquidity(
address tokenA,
address tokenB,
uint256 amountADesired,
uint256 amountBDesired,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
)
external
returns (
uint256 amountA,
uint256 amountB,
uint256 liquidity
);
function addLiquidityETH(
address token,
uint256 amountTokenDesired,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
)
external
payable
returns (
uint256 amountToken,
uint256 amountETH,
uint256 liquidity
);
function removeLiquidity(
address tokenA,
address tokenB,
uint256 liquidity,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline
) external returns (uint256 amountA, uint256 amountB);
function removeLiquidityETH(
address token,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external returns (uint256 amountToken, uint256 amountETH);
function removeLiquidityWithPermit(
address tokenA,
address tokenB,
uint256 liquidity,
uint256 amountAMin,
uint256 amountBMin,
address to,
uint256 deadline,
bool approveMax,
uint8 v,
bytes32 r,
bytes32 s
) external returns (uint256 amountA, uint256 amountB);
function removeLiquidityETHWithPermit(
address token,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline,
bool approveMax,
uint8 v,
bytes32 r,
bytes32 s
) external returns (uint256 amountToken, uint256 amountETH);
function swapExactTokensForTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapTokensForExactTokens(
uint256 amountOut,
uint256 amountInMax,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapExactETHForTokens(
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external payable returns (uint256[] memory amounts);
function swapTokensForExactETH(
uint256 amountOut,
uint256 amountInMax,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapExactTokensForETH(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external returns (uint256[] memory amounts);
function swapETHForExactTokens(
uint256 amountOut,
address[] calldata path,
address to,
uint256 deadline
) external payable returns (uint256[] memory amounts);
function quote(
uint256 amountA,
uint256 reserveA,
uint256 reserveB
) external pure returns (uint256 amountB);
function getAmountOut(
uint256 amountIn,
uint256 reserveIn,
uint256 reserveOut
) external pure returns (uint256 amountOut);
function getAmountIn(
uint256 amountOut,
uint256 reserveIn,
uint256 reserveOut
) external pure returns (uint256 amountIn);
function getAmountsOut(uint256 amountIn, address[] calldata path)
external
view
returns (uint256[] memory amounts);
function getAmountsIn(uint256 amountOut, address[] calldata path)
external
view
returns (uint256[] memory amounts);
}
interface IUniswapV2Router02 is IUniswapV2Router01 {
function removeLiquidityETHSupportingFeeOnTransferTokens(
address token,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline
) external returns (uint256 amountETH);
function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens(
address token,
uint256 liquidity,
uint256 amountTokenMin,
uint256 amountETHMin,
address to,
uint256 deadline,
bool approveMax,
uint8 v,
bytes32 r,
bytes32 s
) external returns (uint256 amountETH);
function swapExactTokensForTokensSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external;
function swapExactETHForTokensSupportingFeeOnTransferTokens(
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external payable;
function swapExactTokensForETHSupportingFeeOnTransferTokens(
uint256 amountIn,
uint256 amountOutMin,
address[] calldata path,
address to,
uint256 deadline
) external;
}
contract Diamond is ERC20 {
using SafeMath for uint256;
IUniswapV2Router02 public uniswapV2Router;
IUniswapV2Pair public uniswapV2Pair;
address _tokenOwner;
address private marketAddress;
address public teamAddress;
mapping(address => bool) private _isExcludedFromFees;
bool public swapAndLiquifyEnabled = true;
bool private swapping = false;
bool public swapstatus;
bool public checkWalletLimit = true;
uint256 public lpFee = 30;
uint256 public marketFee = 20;
uint256 public totalFee = lpFee+marketFee;
uint256 public feeAmount = 0;
uint256 public feeTokenAmount = 0;
uint256 public lpDivTokenAmount = 0;
uint256 public lpDivThresAmount = 0;
uint256 public >
uint256 public _walletMax = 5 *10**18;
IERC20 public usdt = IERC20(0x55d398326f99059fF775485246999027B3197955);
IERC20 public deadAddress =IERC20(0x000000000000000000000000000000000000dEaD);
IERC20 public lpToken;
address[] private lpUser;
mapping(address => bool) public lpPush;
mapping(address => uint256) private lpIndex;
address[] public _exAddress;
mapping(address => bool) private _bexAddress;
mapping(address => uint256) private _exIndex;
mapping(address => bool) public ammPairs;
mapping(address => bool) public whitelist;
mapping(address => bool) public _isBlacklisted;
mapping (address => bool) public isWalletLimitExempt;
address public lastAddress = address(0);
uint256 private lpPos = 0;
uint256 private lpTokenDivThres;
uint256 private divLpHolderAmount;
UsdtWrap RECV;
event ExcludeFromFees(address indexed account, bool isExcluded);
event WhitelistMultipleAddresses(address[] accounts, bool value);
event BlacklistMultipleAddresses(address[] accounts, bool value);
event SwapAndLiquify(
uint256 tokensSwapped,
uint256 ethReceived
);
constructor() ERC20("BAOFU Token", "BF") {
uniswapV2Router = IUniswapV2Router02(0x10ED43C718714eb63d5aA57B78B54704E256024E);
// Create a uniswap pair for this new token
_tokenOwner = address(0xed397c22d88f60c20F694ca1B5Bd493DF96Fb09b);
marketAddress = address(0xed397c22d88f60c20F694ca1B5Bd493DF96Fb09b);
teamAddress= address(0xed397c22d88f60c20F694ca1B5Bd493DF96Fb09b);
uniswapV2Pair = IUniswapV2Pair(IUniswapV2Factory(uniswapV2Router.factory()).createPair(address(this), address(usdt)));
IUniswapV2Pair uniswapV2PairBNB = IUniswapV2Pair(IUniswapV2Factory(uniswapV2Router.factory()).createPair(address(this), uniswapV2Router.WETH()));
ammPairs[address(uniswapV2Pair)] = true;
ammPairs[address(uniswapV2PairBNB)] = true;
isWalletLimitExempt[address(uniswapV2Pair)] = true;
isWalletLimitExempt[address(this)] = true;
isWalletLimitExempt[_tokenOwner] = true;
isWalletLimitExempt[address(deadAddress)] = true;
_approve(address(this), address(uniswapV2Router), ~uint256(0));
excludeFromFees(_tokenOwner, true);
excludeFromFees(address(this), true);
excludeFromFees(address(uniswapV2Router),true);
excludeFromFees(marketAddress, true);
excludeFromFees(teamAddress, true);
lpToken = usdt;
RECV = new UsdtWrap(IERC20(address(this)));
_mint(_tokenOwner, 688 * 10**18);
divLpHolderAmount = 1 * 10**16;
lpTokenDivThres = 300 * 10**18;
}
receive() external payable {}
function setFees(uint256 _lpFee,uint256 _marketFee) external onlyOwner{
lpFee = _lpFee;
marketFee = _marketFee;
totalFee = lpFee+marketFee;
}
function setlpDivThres(uint256 _thres) public onlyOwner {
lpTokenDivThres = _thres;
}
function setSwapStatus(bool status) public onlyOwner {
swapstatus = status;
}
function setDivLpHolderAmount(uint256 amount) public onlyOwner {
divLpHolderAmount = amount;
}
function enableDisableWalletLimit(bool newValue) external onlyOwner {
checkWalletLimit = newValue;
}
function setIsWalletLimitExempt(address holder, bool exempt) external onlyOwner {
isWalletLimitExempt[holder] = exempt;
}
function setWalletLimit(uint256 newLimit) external onlyOwner {
_walletMax = newLimit;
}
function excludeFromFees(address account, bool excluded) public onlyOwner {
_isExcludedFromFees[account] = excluded;
emit ExcludeFromFees(account, excluded);
}
function setAmmPairs(address pair, bool isPair) public onlyOwner {
ammPairs[pair] = isPair;
}
function whitelistMultipleAddresses(address[] calldata accounts, bool value) external onlyOwner {
for(uint256 i = 0; i < accounts.length; i++) {
whitelist[accounts[i]] = value;
}
emit WhitelistMultipleAddresses(accounts, value);
}
function setWhitelist(address account, bool value) public onlyOwner {
whitelist[account] = value;
}
function blacklistMultipleAddresses(address[] calldata accounts, bool value) external onlyOwner {
for(uint256 i = 0; i < accounts.length; i++) {
_isBlacklisted[accounts[i]] = value;
}
emit BlacklistMultipleAddresses(accounts, value);
}
function blacklistAddress(address account, bool value) external onlyOwner{
_isBlacklisted[account] = value;
}
function lpDividendProc(address[] memory lpAddresses)
private
{
for(uint256 i = 0 ;i< lpAddresses.length;i++){
if(lpPush[lpAddresses[i]] && (uniswapV2Pair.balanceOf(lpAddresses[i]) < divLpHolderAmount||_bexAddress[lpAddresses[i]])){
_clrLpDividend(lpAddresses[i]);
}else if(!Address.isContract(lpAddresses[i]) && !lpPush[lpAddresses[i]] && !_bexAddress[lpAddresses[i]]&& uniswapV2Pair.balanceOf(lpAddresses[i]) >= divLpHolderAmount){
_setLpDividend(lpAddresses[i]);
}
}
}
function setExAddress(address exa) public onlyOwner {
require( !_bexAddress[exa]);
_bexAddress[exa] = true;
_exIndex[exa] = _exAddress.length;
_exAddress.push(exa);
address[] memory addrs = new address[](1);
addrs[0] = exa;
lpDividendProc(addrs);
}
function clrExAddress(address exa) public onlyOwner {
require( _bexAddress[exa]);
_bexAddress[exa] = false;
_exAddress[_exIndex[exa]] = _exAddress[_exAddress.length-1];
_exIndex[_exAddress[_exAddress.length-1]] = _exIndex[exa];
_exIndex[exa] = 0;
_exAddress.pop();
address[] memory addrs = new address[](1);
addrs[0] = exa;
lpDividendProc(addrs);
}
function _clrLpDividend(address lpAddress) internal{
lpPush[lpAddress] = false;
lpUser[lpIndex[lpAddress]] = lpUser[lpUser.length-1];
lpIndex[lpUser[lpUser.length-1]] = lpIndex[lpAddress];
lpIndex[lpAddress] = 0;
lpUser.pop();
}
function _setLpDividend(address lpAddress) internal{
lpPush[lpAddress] = true;
lpIndex[lpAddress] = lpUser.length;
lpUser.push(lpAddress);
}
function setSwapAndLiquifyEnabled(bool _enabled) public onlyOwner {
swapAndLiquifyEnabled = _enabled;
}
function setTeamAddress(address payable newWallet) external onlyOwner{
teamAddress = newWallet;
}
function isExcludedFromFees(address account) public view returns (bool) {
return _isExcludedFromFees[account];
}
function _transfer(
address from,
address to,
uint256 amount
) internal override {
require(from != address(0), "ERC20: transfer from the zero address");
require(to != address(0), "ERC20: transfer to the zero address");
require(!_isBlacklisted[from] && !_isBlacklisted[to], 'Blacklisted address');
if((ammPairs[from] || ammPairs[to]) && swapstatus == false){
require(whitelist[from] || whitelist[to],"only whitelist!");
}
if( uniswapV2Pair.totalSupply() > 0 && balanceOf(address(this)) > balanceOf(address(uniswapV2Pair)).div(10000) && to == address(uniswapV2Pair)){
if (
!swapping &&
_tokenOwner != from &&
_tokenOwner != to &&
!ammPairs[from] &&
!(from == address(uniswapV2Router) && !ammPairs[to])&&
swapAndLiquifyEnabled
) {
swapping = true;
swapProc();
swapping = false;
}
}
if(ammPairs[to])
{
uint256 balance = balanceOf(from);
if (amount == balance) {
amount = amount.sub(amount.div(1000));
}
}
bool takeFee = !swapping;
if (_isExcludedFromFees[from] || _isExcludedFromFees[to]) {
takeFee = false;
}else {
if((!ammPairs[from] && !ammPairs[to])){
takeFee = false;
}
if(!ammPairs[from])
amount = amount.mul(999).div(1000);
}
if (takeFee) {
if(ammPairs[to] || ammPairs[from]){
uint256 share = amount.div(1000);
super._transfer(from, address(this), share.mul(totalFee));
feeAmount = feeAmount.add(share.mul(totalFee));
amount = amount.sub(share.mul(totalFee));
}
}
if(checkWalletLimit && !isWalletLimitExempt[to])
require(balanceOf(to).add(amount) <= _walletMax);
super._transfer(from, to, amount);
if(lastAddress == address(0)){
address[] memory addrs = new address[](2);
addrs[0] = from;
addrs[1] = to;
lpDividendProc(addrs);
}else{
address[] memory addrs = new address[](3);
addrs[0] = from;
addrs[1] = to;
addrs[2] = lastAddress;
lastAddress = address(0);
lpDividendProc(addrs);
}
if(ammPairs[to]){
lastAddress = from;
}
if(!swapping && _tokenOwner != from && _tokenOwner != to){
_splitlpToken();
}
}
function swapProc() public {
uint256 canSellAmount = feeAmount.sub(feeTokenAmount);
uint256 amountT = balanceOf(address(uniswapV2Pair)).div(10000);
if(balanceOf(address(this)) >= canSellAmount && canSellAmount >= amountT){
if(canSellAmount >= amountT.mul(300))
canSellAmount = amountT.mul(300);
feeTokenAmount = feeTokenAmount.add(canSellAmount);
uint256 beforeBal = IERC20(usdt).balanceOf(address(this));
swapTokensForUSDT(canSellAmount);
uint256 newBal = IERC20(usdt).balanceOf(address(this)).sub(beforeBal);
uint256 marketAmount = newBal.mul(marketFee).div(marketFee+lpFee);
IERC20(usdt).transfer(marketAddress,marketAmount.div(2));
IERC20(usdt).transfer(teamAddress,marketAmount.div(2));
lpDivTokenAmount = IERC20(usdt).balanceOf(address(this));
}
}
function swapTokensForUSDT(uint256 tokenAmount) private {
// generate the uniswap pair path of token -> weth
address[] memory path = new address[](2);
path[0] = address(this);
path[1] = address(usdt);
// make the swap
uniswapV2Router.swapExactTokensForTokensSupportingFeeOnTransferTokens(
tokenAmount,
0, // accept any amount of ETH
path,
address(RECV),
block.timestamp
);
RECV.withdraw();
}
function rescueToken(address tokenAddress, uint256 tokens)
public
onlyOwner
returns (bool success)
{
return IERC20(tokenAddress).transfer(msg.sender, tokens);
}
function _splitlpToken() private {
uint256 thisAmount = lpDivTokenAmount;
if(thisAmount < lpTokenDivThres) return;
if(lpPos >= lpUser.length) lpPos = 0;
if(lpUser.length > 0 ){
uint256 procMax = oneDividendNum;
if(lpPos + oneDividendNum > lpUser.length)
procMax = lpUser.length - lpPos;
uint256 procPos = lpPos + procMax;
for(uint256 i = lpPos;i < procPos && i < lpUser.length;i++){
if(uniswapV2Pair.balanceOf(lpUser[i]) < divLpHolderAmount){
_clrLpDividend(lpUser[i]);
}
}
}
if(lpUser.length == 0) return;
uint256 totalAmount = 0;
uint256 num = lpUser.length >= oneDividendNum ? oneDividendNum:lpUser.length;
totalAmount = uniswapV2Pair.totalSupply();
for(uint256 i = 0; i < _exAddress.length;i++){
totalAmount = totalAmount.sub(uniswapV2Pair.balanceOf(_exAddress[i]));
}
if(totalAmount == 0) return;
uint256 resDivAmount = thisAmount;
uint256 dAmount;
for(uint256 i=0;i<num;i++){
address user = lpUser[(lpPos+i).mod(lpUser.length)];
if(user != address(0xdead) ){
if(uniswapV2Pair.balanceOf(user) >= divLpHolderAmount){
dAmount = uniswapV2Pair.balanceOf(user).mul(thisAmount).div(totalAmount);
if(dAmount>0){
lpToken.transfer(user,dAmount);
resDivAmount = resDivAmount.sub(dAmount);
}
}
}
}
lpPos = (lpPos+num).mod(lpUser.length);
lpDivTokenAmount = resDivAmount;
}
function getlpsize() public view returns (uint256) {
return lpUser.length;
}
}