Kafka 架构和原理机制 (图文全面详解)

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生网关 MSE Higress,422元/月
简介: 一文了解掌握 Kafka 的基本架构、原理、特性、应用场景,以及Zookeeper 在 kafka 的作用。

目录

  • 一:Kafka 简介
  • 二:Kafka 基本架构
  • 三:Kafka 基本原理
  • 四:Zookeeper 在 kafka 的作用
  • 五:Kafka 的特性
  • 六:Kafka 的应用场景

一:Kafka 简介

Apache Kafka 是分布式发布-订阅消息系统,在 kafka 官网上对 kafka 的定义:一个分布式发布-订阅消息传递系统。

Kafka 最初由 LinkedIn 公司开发,Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目。

Kafka 的主要应用场景有:日志收集系统和消息系统。

二:Kafka 基本架构

Kafka 的架构包括以下组件:

1、话题(Topic):是特定类型的消息流。消息是字节的有效负载(Payload),话题是消息的分类名;

2、生产者(Producer):是能够发布消息到话题的任何对象;

3、服务代理(Broker):已发布的消息保存在一组服务器中,它们被称为代理(Broker)或Kafka集群;

4、消费者(Consumer):可以订阅一个或多个话题,并从Broker拉数据,从而消费这些已发布的消息;

上图中可以看出,生产者将数据发送到 Broker 代理,Broker 代理有多个话题 topic ,消费者从 Broker 获取数据。

三:Kafka 基本原理

我们将消息的发布(publish)称作 producer,将消息的订阅(subscribe)表述为 consumer,将中间的存储阵列称作 broker(代理),这样就可以大致描绘出这样一个场面:

生产者将数据生产出来,交给 broker 进行存储,消费者需要消费数据了,就从 broker 中去拿出数据来,然后完成一系列对数据的处理操作。

多个 broker 协同合作,producer 和 consumer 部署在各个业务逻辑中被频繁的调用,三者通过 zookeeper 管理协调请求和转发,这样一个高性能的分布式消息发布订阅系统就完成了。

图上有个细节需要注意,producer 到 broker 的过程是 push,也就是有数据就推送到 broker,而 consumer 到 broker 的过程是 pull,是通过 consumer 主动去拉数据的。

四:Zookeeper 在 Kafka 的作用

1.  无论是 Kafka 集群,还是 producer 和 consumer ,都依赖于 Zookeeper 来保证系统可用性集群保存一些 meta 信息。

2.  Kafka 使用 Zookeeper 作为其分布式协调框架,可以很好地将消息生产、消息存储、消息消费的过程结合在一起。

3.  Kafka 借助 Zookeeper,让生产者、消费者和 broker 在内的所有组件,在无状态的情况下,建立起生产者和消费者的订阅关系,并实现生产者与消费者的负载均衡。

五:Kafka 的特性

1. 高吞吐量、低延迟

Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒,每个 topic 可以分多个 partition ,  consumer group 对 partition 进行 consume 操作。

2. 可扩展性

Kafka 集群支持热扩展。

3.  持久性、可靠性

消息被持久化到本地磁盘,并且支持数据备份防止数据丢失。

4.  容错性

允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)

5.  高并发

支持数千个客户端同时读写。

六:Kafka 的应用场景

1.  日志收集

一个公司可以用 Kafka 收集各种服务的 log ,通过 Kafka 以统一接口服务的方式开放给各种 consumer,例如:hadoop、Hbase、Solr 等。

2.  消息系统

解耦和生产者和消费者、缓存消息等。

3.用户活动跟踪

Kafka 经常被用来记录 web 用户、或者 app 用户的各种活动,例如:浏览网页、搜索、点击等活动。

这些活动信息,被各个服务器发布到 Kafka 的 topic 中,订阅者再通过订阅这些 topic 来做实时的监控分析,或者装载到 hadoop 、数据仓库中做离线分析和挖掘。

4.  运营指标

Kafka 也经常用来记录运营监控数据。

包括收集各种分布式应用的数据,生产各种操作的集中反馈等,例如:报警和报告。

5. 流式处理

例如:spark streaming、storm 。

以上!

作者简介

陈睿 | mikechen , 10年+大厂架构经验,「mikechen 的互联网架构」系列文章作者,专注于互联网架构技术。

阅读「mikechen 的互联网架构」40W 字技术文章合集

Java并发 | JVM | MySQL | Spring | Redis | 分布式 | 高并发

网络异常,图片无法展示
|

相关文章
|
2月前
|
消息中间件 存储 缓存
大厂面试高频:Kafka 工作原理 ( 详细图解 )
本文详细解析了 Kafka 的核心架构和实现原理,消息中间件是亿级互联网架构的基石,大厂面试高频,非常重要,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:Kafka 工作原理 ( 详细图解 )
|
4天前
|
消息中间件 存储 缓存
一文带你秒懂 Kafka工作原理!
Apache Kafka 是一个高吞吐量、低延迟的分布式消息系统,广泛应用于实时数据处理、日志收集和消息队列等领域。它最初由LinkedIn开发,2011年成为Apache项目。Kafka支持消息的发布与订阅,具备高效的消息持久化能力,适用于TB级数据的处理。
|
2月前
|
消息中间件 缓存 架构师
关于 Kafka 高性能架构,这篇说得最全面,建议收藏!
Kafka 是一个高吞吐量、高性能的消息中间件,关于 Kafka 高性能背后的实现,是大厂面试高频问题。本篇全面详解 Kafka 高性能背后的实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
关于 Kafka 高性能架构,这篇说得最全面,建议收藏!
|
2月前
|
SQL Java 数据库连接
Mybatis架构原理和机制,图文详解版,超详细!
MyBatis 是 Java 生态中非常著名的一款 ORM 框架,在一线互联网大厂中应用广泛,Mybatis已经成为了一个必会框架。本文详细解析了MyBatis的架构原理与机制,帮助读者全面提升对MyBatis的理解和应用能力。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
Mybatis架构原理和机制,图文详解版,超详细!
|
3月前
|
存储 资源调度 算法
操作系统的心脏:深入理解内核架构与机制####
【10月更文挑战第16天】 本文旨在揭开操作系统最神秘的面纱——内核,通过剖析其架构设计与关键机制,引领读者一窥究竟。在这篇探索之旅中,我们将深入浅出地讨论内核的基本构成、进程管理的智慧、内存分配的策略,以及那至关重要的系统调用接口,揭示它们是如何协同工作,支撑起现代计算机系统的高效运行。这既是一次技术的深潜,也是对“看不见的手”调控数字世界的深刻理解。 ####
77 3
|
2月前
|
消息中间件 存储 负载均衡
【赵渝强老师】Kafka的体系架构
Kafka消息系统是一个分布式系统,包含生产者、消费者、Broker和ZooKeeper。生产者将消息发送到Broker,消费者从Broker中拉取消息并处理。主题按分区存储,每个分区有唯一的偏移量地址,确保消息顺序。Kafka支持负载均衡和容错。视频讲解和术语表进一步帮助理解。
|
3月前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
260 0
|
1月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
2月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
66 3
|
2月前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####

热门文章

最新文章