Go语言,gRPC 的使用了解--下

简介: 客户端流式 RPC、双向流式 RPC

书接上文,我们继续实现剩余的两种方式--客户端流式 RPC、双向流式 RPC。

Client-side streaming RPC:客户端流式 RPC、

客户端流式 RPC,单向流,客户端通过流式发起多次 RPC 请求到服务端,服务端发起一次响应给客户端

Proto :

syntax = "proto3";
package proto;
message String {
    string value = 1;
}
service HelloService {
    rpc Hello (stream String) returns (String){};
}
复制代码

server:

package main
import (
  "google.golang.org/grpc"
  "io"
  "log"
  "net"
  pb "rpc/proto" // 设置引用别名
)
// HelloServiceImpl 定义我们的服务
type HelloServiceImpl struct{}
//实现Hello方法
func (p *HelloServiceImpl) Hello(stream pb.HelloService_HelloServer) error {
  for {
    resp, err := stream.Recv()
    if err == io.EOF {
      return stream.SendAndClose(&pb.String{Value:"say.hello"})
    }
    if err != nil {
      return err
    }
    log.Printf("resp: %v", resp)
  }
  return nil
}
func main() {
  // 新建gRPC服务器实例
  grpcServer := grpc.NewServer()
  // 在gRPC服务器注册我们的服务
  pb.RegisterHelloServiceServer(grpcServer, new(HelloServiceImpl))
  lis, err := net.Listen("tcp", ":1234")
  if err != nil {
    log.Fatal(err)
  }
  log.Println(" net.Listing...")
  //用服务器 Serve() 方法以及我们的端口信息区实现阻塞等待,直到进程被杀死或者 Stop() 被调用
  err = grpcServer.Serve(lis)
  if err != nil {
    log.Fatalf("grpcServer.Serve err: %v", err)
  }
}
复制代码

如上,我们对每一个 Recv 都进行了处理,当发现 io.EOF (流关闭) 后,需要通过 stream.SendAndClose 方法将最终的响应结果发送给客户端,同时关闭正在另外一侧等待的 Recv。

client:

package main
import (
  "context"
  "google.golang.org/grpc"
  "log"
  pb "rpc/proto" // 设置引用别名
)
// SayHello 调用服务端的 Hello 方法
func SayHello(client pb.HelloServiceClient, r *pb.String) error {
  stream, _ := client.Hello(context.Background())
  for n := 0; n < 6; n++ {
    _ = stream.Send(r)
  }
  resp, _ := stream.CloseAndRecv()
  log.Printf("resp err: %v", resp)
  return nil
}
func main() {
  conn, err := grpc.Dial("localhost:1234", grpc.WithInsecure())
  if err != nil {
    log.Fatal("dialing err:", err)
  }
  defer conn.Close()
  // 建立gRPC连接
  client := pb.NewHelloServiceClient(conn)
  // 创建发送结构体
  req := pb.String{
    Value: "stream server grpc ",
  }
  SayHello(client, &req)
}
复制代码

在 Server 端的 stream.CloseAndRecv,与 Client 端 stream.SendAndClose 是配套使用的方法。

开启服务器端,开启客户端。执行结果如下:

$ go run server.go
2021/11/17 13:26:34  net.Listing...
2021/11/17 13:26:44 resp: value:"stream server grpc "
2021/11/17 13:26:44 resp: value:"stream server grpc "
2021/11/17 13:26:44 resp: value:"stream server grpc "
2021/11/17 13:26:44 resp: value:"stream server grpc "
2021/11/17 13:26:44 resp: value:"stream server grpc "
2021/11/17 13:26:44 resp: value:"stream server grpc "
复制代码
$ go run client.go
2021/11/17 13:26:44 resp err: value:"say.hello"
复制代码

Bidirectional streaming RPC:双向流式 RPC

双向流式 RPC,由客户端以流式的方式发起请求,服务端也以流式的方式响应请求。

首个请求一定是 Client 发起,但具体交互方式(谁先谁后、一次发多少、响应多少、什么时候关闭)根据程序编写的方式来确定(可以结合协程)。

Proto :

syntax = "proto3";
package proto;
message String {
    string value = 1;
}
service HelloService {
    rpc Hello (stream String) returns (stream String){};
}
复制代码

server:

package main
import (
  "google.golang.org/grpc"
  "io"
  "log"
  "net"
  pb "rpc/proto" // 设置引用别名
)
// HelloServiceImpl 定义我们的服务
type HelloServiceImpl struct{}
//实现Hello方法
func (p *HelloServiceImpl) Hello(stream pb.HelloService_HelloServer) error {
  for {
    _ = stream.Send(&pb.String{Value: "say.hello"})
    resp, err := stream.Recv()
    //接收完了返回
    if err == io.EOF {
      return nil
    }
    if err != nil {
      return err
    }
    log.Printf("resp: %v", resp)
  }
}
func main() {
  // 新建gRPC服务器实例
  grpcServer := grpc.NewServer()
  // 在gRPC服务器注册我们的服务
  pb.RegisterHelloServiceServer(grpcServer, new(HelloServiceImpl))
  lis, err := net.Listen("tcp", ":1234")
  if err != nil {
    log.Fatal(err)
  }
  log.Println(" net.Listing...")
  err = grpcServer.Serve(lis)
  if err != nil {
    log.Fatalf("grpcServer.Serve err: %v", err)
  }
}
复制代码

client:

package main
import (
  "context"
  "google.golang.org/grpc"
  "io"
  "log"
  pb "rpc/proto" // 设置引用别名
)
// SayHello 调用服务端的 Hello 方法
func SayHello(client pb.HelloServiceClient, r *pb.String) error {
  stream, _ := client.Hello(context.Background())
  for n := 0; n <= 3; n++ {
    _ = stream.Send(r)
    resp, err := stream.Recv()
    if err == io.EOF {
      break
    }
    if err != nil {
      return err
    }
    log.Printf("resp err: %v", resp)
  }
  _ = stream.CloseSend()
  return nil
}
func main() {
  conn, err := grpc.Dial("localhost:1234", grpc.WithInsecure())
  if err != nil {
    log.Fatal("dialing err:", err)
  }
  defer conn.Close()
  // 建立gRPC连接
  client := pb.NewHelloServiceClient(conn)
  // 创建发送结构体
  req := pb.String{
    Value: "stream server grpc ",
  }
  SayHello(client, &req)
}
复制代码

服务端在循环中接收客户端发来的数据,如果遇到io.EOF表示客户端流被关闭,如果函数退出表示服 务端流关闭。生成返回的数据通过流发送给客户端,双向流数据的发送和接收都是完全独立的行为。需 要注意的是,发送和接收的操作并不需要一一对应,用户可以根据真实场景进行组织代码。

开启服务器端,开启客户端。执行结果如下:

$ go run server.go
2021/11/17 15:46:10  net.Listing...
2021/11/17 15:46:19 resp: value:"stream server grpc "
2021/11/17 15:46:19 resp: value:"stream server grpc "
2021/11/17 15:46:19 resp: value:"stream server grpc "
2021/11/17 15:46:19 resp: value:"stream server grpc "
复制代码
$ go run client.go
2021/11/17 15:46:19 resp err: value:"say.hello"
2021/11/17 15:46:19 resp err: value:"say.hello"
2021/11/17 15:46:19 resp err: value:"say.hello"
2021/11/17 15:46:19 resp err: value:"say.hello"


相关文章
|
5天前
|
存储 JSON 监控
Viper,一个Go语言配置管理神器!
Viper 是一个功能强大的 Go 语言配置管理库,支持从多种来源读取配置,包括文件、环境变量、远程配置中心等。本文详细介绍了 Viper 的核心特性和使用方法,包括从本地 YAML 文件和 Consul 远程配置中心读取配置的示例。Viper 的多来源配置、动态配置和轻松集成特性使其成为管理复杂应用配置的理想选择。
23 2
|
3天前
|
Go 索引
go语言中的循环语句
【11月更文挑战第4天】
12 2
|
3天前
|
Go C++
go语言中的条件语句
【11月更文挑战第4天】
14 2
|
7天前
|
程序员 Go
go语言中的控制结构
【11月更文挑战第3天】
84 58
|
6天前
|
监控 Go API
Go语言在微服务架构中的应用实践
在微服务架构的浪潮中,Go语言以其简洁、高效和并发处理能力脱颖而出,成为构建微服务的理想选择。本文将探讨Go语言在微服务架构中的应用实践,包括Go语言的特性如何适应微服务架构的需求,以及在实际开发中如何利用Go语言的特性来提高服务的性能和可维护性。我们将通过一个具体的案例分析,展示Go语言在微服务开发中的优势,并讨论在实际应用中可能遇到的挑战和解决方案。
|
3天前
|
Go
go语言中的 跳转语句
【11月更文挑战第4天】
10 4
|
3天前
|
JSON 安全 Go
Go语言中使用JWT鉴权、Token刷新完整示例,拿去直接用!
本文介绍了如何在 Go 语言中使用 Gin 框架实现 JWT 用户认证和安全保护。JWT(JSON Web Token)是一种轻量、高效的认证与授权解决方案,特别适合微服务架构。文章详细讲解了 JWT 的基本概念、结构以及如何在 Gin 中生成、解析和刷新 JWT。通过示例代码,展示了如何在实际项目中应用 JWT,确保用户身份验证和数据安全。完整代码可在 GitHub 仓库中查看。
14 1
|
7天前
|
Go 数据处理 API
Go语言在微服务架构中的应用与优势
本文摘要采用问答形式,以期提供更直接的信息获取方式。 Q1: 为什么选择Go语言进行微服务开发? A1: Go语言的并发模型、简洁的语法和高效的编译速度使其成为微服务架构的理想选择。 Q2: Go语言在微服务架构中有哪些优势? A2: 主要优势包括高性能、高并发处理能力、简洁的代码和强大的标准库。 Q3: 文章将如何展示Go语言在微服务中的应用? A3: 通过对比其他语言和展示Go语言在实际项目中的应用案例,来说明其在微服务架构中的优势。
|
7天前
|
Go 数据处理 调度
探索Go语言的并发模型:Goroutines与Channels的协同工作
在现代编程语言中,Go语言以其独特的并发模型脱颖而出。本文将深入探讨Go语言中的Goroutines和Channels,这两种机制如何协同工作以实现高效的并发处理。我们将通过实际代码示例,展示如何在Go程序中创建和管理Goroutines,以及如何使用Channels进行Goroutines之间的通信。此外,本文还将讨论在使用这些并发工具时可能遇到的常见问题及其解决方案,旨在为Go语言开发者提供一个全面的并发编程指南。
|
5天前
|
Go 调度 开发者
探索Go语言中的并发模式:goroutine与channel
在本文中,我们将深入探讨Go语言中的核心并发特性——goroutine和channel。不同于传统的并发模型,Go语言的并发机制以其简洁性和高效性著称。本文将通过实际代码示例,展示如何利用goroutine实现轻量级的并发执行,以及如何通过channel安全地在goroutine之间传递数据。摘要部分将概述这些概念,并提示读者本文将提供哪些具体的技术洞见。