(Java)数据结构---优先级队列(PriorityQueue)

简介: 如果数据量大使用排序那种方法就不可取了,那么如何解决呢?

概念

优先级队列是一种先进先出(FIFO)的数据结构,与队列不同的是,操作的数据带有优先级,通俗的讲就是可以比较大小,在出队列的时候往往需要优先级最高或者最低的元素先出队列,这种数据结构就是优先级队列(PriorityQueue)


PriorityQueue的使用

构造方法


这里只介绍三种常用的构造方法

构造方法 说明
PriorityQueue() 不带参数,默认容量为11
PriorityQueue(int initialCapacity) 参数为初始容量,该初始容量不能小于1
PriorityQueue(Collection<? extends E> c) 参数为一个集合


代码展示:

import java.util.ArrayList;
import java.util.List;
import java.util.PriorityQueue;
public class TestPriorityQueue {
    public static void main(String[] args) {
        PriorityQueue<Integer> p1 = new PriorityQueue<>(); //容量默认为11
        PriorityQueue<Integer> p2 = new PriorityQueue<>(10); //参数为初始容量
        List<Integer> list = new ArrayList<>();
        list.add(0);
        list.add(1);
        list.add(2);
        PriorityQueue<Integer> p3 = new PriorityQueue<>(list); //使用集合list作为参
        数构造优先 
                                                               // 级队列
    }
}


常用方法

方法 说明
boolean offer(E e) 插入元素e,返回是否插入成功,e为null,会抛异常
E peek() 获取堆(后面介绍堆)顶元素,如果队列为空,返回null
E poll() 删除堆顶元素并返回,如果队列为空,返回null
int size() 获取有效元素个数
void clear() 清空队列
boolean isEmpty() 判断队列是否为空


offer方法的测试

PriorityQueue<Integer> p = new PriorityQueue<>();
        p.offer(1);
        p.offer(2);
        p.offer(3);
        System.out.println(p.size());
        p.offer(null);

     

打印结果:

image.png


1,2,3都正常插入,但是插入null的时候,报了NullPointerException空指针异常


peek与poll方法的测试

PriorityQueue<Integer> p = new PriorityQueue<>();
        p.offer(1);
        p.offer(2);
        p.offer(3);
        System.out.println(p.peek());
        System.out.println(p.poll());
        System.out.println(p.size());
        p.clear();
        System.out.println(p.peek());
        System.out.println(p.poll());

   

打印结果:

image.png


默认是小堆,所以堆顶元素是1,获取到1,在删除1,剩余元素个数为两个,当队列为空的时候,这两个方法都返回null


size,isEmpty,clear方法的测试

PriorityQueue<Integer> p = new PriorityQueue<>();
        p.offer(1);
        p.offer(2);
        p.offer(3);
        System.out.println(p.size());
        System.out.println(p.isEmpty());
        p.clear();
        System.out.println(p.isEmpty());

   

打印结果:

image.png


打印元素个数为3,所以不为空输出false,清空后,队列为空,输出true


注意事项


PriorityQueue中存放的元素必须能比较大小,不能比较大小的对象不能插入,会抛出ClassCastException异常

例如:向优先级队列中插入两个学生类型的数据

class Student {
    private String name;
    private int age;
    public Student(String name, int age) {
        this.name = name;
        this.age = age;
    }
}
public class Test {
    public static void main(String[] args) {
        Student s1 = new Student("张三",25);
        Student s2 = new Student("李四",30);
        PriorityQueue<Student> p = new PriorityQueue();
        p.offer(s1);
        p.offer(s2);
    }
}


结果:报了类型转换异常的错误,因为student类型不能直接比较大小

image.png

如果想比较两个自定类型的大小,请参考Java中对象的比较这篇文章


不能插入null对象,否则会抛NullPointerException异常

内部可以自动扩容

PriorityQueue底层使用堆数据结构

PriorityQueue默认是小堆,如果想要创建大堆可以使用如下方式创建:

PriorityQueue<Integer> pq = new PriorityQueue<>(new Comparator<Integer>() {
            @Override
            public int compare(Integer o1, Integer o2) {
                return o2-o1;
            }
        });

   

注意:o2-o1是创建大堆,o1-o2是创建小堆


PriorityQueue的扩容方式


以下是JDK1.8中扩容的方式:

微信图片_20221030130734.png

说明:


如果容量小于64,按照oldCapacity的2倍扩容

如果容量大于等于64,按照oldCapacity的1.5倍扩容

如果容量超过MAX_ARRAY_SIZE,按照MAX_ARRAY_SIZE扩容


小试牛刀(最小k个数)

题目连接:最小k个数


方法:创建一个优先级队列,奖数组中的元素依次放入该优先级队列中,在依次从该优先级队列取出k个即可

class Solution {
    public int[] smallestK(int[] arr, int k) {
        int[] ret = new int[k];
        if(k == 0 || arr.length==0){
            return ret;
        }
        PriorityQueue<Integer> p = new PriorityQueue<>(arr.length);
        for(int i = 0;i < arr.length;i++){
            p.offer(arr[i]);
        }
        for(int i = 0;i < k;i++){
            ret[i] = p.poll();
        }
        return ret;
    }
}

堆的介绍

JDK1.8中PriorityQueue底层采用了堆数据结构,堆其实就是对完全二叉树的元素作出了一些调整


所谓堆就是将一组数据按照完全二叉树的顺序存储方式存储,保证每一个根结点元素大于它的孩子结点的元素(大根堆)或者小于它的孩子结点的元素(小根堆)


堆的性质


堆中某个结点的值总是不大于或着不小于其父节点的值

堆是一颗完全二叉树

image.png


堆的创建


此处我们创建小堆,以21,15,19,17,18,23,25为例

image.png


发现上述序列根的左右子树都已经满足小堆的特性,故只需要将根结点向下调整即可


向下调整的过程:


1. 用parent标记要被调整的结点,child标记parent的左孩子


2. 如果左孩子存在,即child


判断parent右孩子是否存在,如果存在让child标记两个孩子最小的孩子

如果parent小于child,则将parent与child标记的元素交换位置,如果parent大于child,说明此时已经满足小堆的特性

让parent=child,child=parent*2+1,循环步骤2,直到不满足步骤2的条件

image.png

代码展示:

public void shiftDown(int[] array,int parent){
        int child = parent*2+1;
        int size = array.length;
        while(child < size){
            if(child+1<size && array[child]>array[child+1]){
                child = child+1;
            }
            if(array[parent] > array[child]){
                swap(array,parent,child);
                parent = child;
                child = parent*2+1;
            }else {
                break;
            }
        }
    }

 

注意:在调整以parent为根的二叉树时,必须满足parent的左右子树满足堆的特性,此时才能向下调整parent


时间复杂度分析:最坏情况从根比到叶子,比较的次数为二叉树的高度,故时间复杂度为O(log2N)


那么对于普通的序列如1,5,3,8,7,6,即根节点的左右子树不满足大堆的特性,该如何调整?


方法:从倒数第一个非叶子结点开始调整,直到调整到根

image.png



代码展示:

public void createHeap(int[] array){
        int root = (array.length-2)>>1;
        for(;root>=0;root--){
            shiftDown(array,root);
        }
    }

创建堆的时间复杂度


image.png


故建堆的时间复杂度为O(N)


堆的插入


堆的插入分为两步:


将元素插入队列尾部,如果空间不够需要扩容

将新插入的结点向上调整,直到满足堆的特性

例如:给大堆8,7,6,5,1,3插入9

image.png

代码展示:

public void shiftUp(int[] array,int child){
        int parent = (child-1)/2;
        while(child > 0){
            if(array[child] < array[parent]){
                break;
            }else {
                swap(array,parent,child);
                child = parent;
                parent = (child-1)/2;
            }
        }
    }

 

堆的删除


堆删除的是堆顶元素


删除步骤:


交换堆顶与堆最后一个元素的位置

将堆中的有效元素个数减少一个

将堆顶元素向下调整

代码展示:

public int poll(){
        int oldVal = array[0];
        array[0] = array[array.length-1];
        size--;
        shiftDown(array,0);
        return oldVal;
    }

优先级队列的模拟实现

此处用小堆实现优先级队列,并且队列中保存的元素为Integer类型


准备工作包括:构造方法,向上调整,向下调整,交换

public class MyPriorityQueue {
    Integer[] array;
    int size;
    public MyPriorityQueue(){
        array = new Integer[11];
        size = 0;
    }
    public MyPriorityQueue(int initCapacity){
        if(initCapacity < 1){
            throw new IllegalArgumentException("初始容量小于1");
        }
        array = new Integer[initCapacity];
        size = 0;
    }
    public MyPriorityQueue(Integer[] arr){
        array = new Integer[arr.length];
        for(int i = 0;i < arr.length;i++){
            array[i] = arr[i];
        }
        size = arr.length;
        int lastLeafParent = (size-2)/2;
        for(int root = lastLeafParent;root >= 0;root--){
            shiftDown(root);
        }
    }
    public void shiftDown(int parent){
        int child = parent*2+1;
        while(child < size){
            if(child+1<size && array[child+1]<array[child]){
                child = child+1;
            }
            if(array[parent] > array[child]){
                swap(parent,child);
                parent = child;
                child = parent*2+1;
            }else {
                return;
            }
        }
    }
    public void shiftUp(int child){
        int parent = (child-1)/2;
        while(child > 0){
            if(array[child] < array[parent]){
                swap(child,parent);
                child = parent;
                parent = (child-1)/2;
            }else {
                return;
            }
        }
    }
    public void swap(int a,int b){
        int t = array[a];
        array[a] = array[b];
        array[b] = t;
    }
}


插入

public boolean offer(Integer e){
        if(e == null){
            throw new NullPointerException("插入的元素为null");
        }
        ensureCapacity();
        array[size++] = e;
        shiftUp(size-1);
        return true;
    }
    private void ensureCapacity(){
        if(array.length == size){
            int newCapacity = array.length*2;
            array = Arrays.copyOf(array,newCapacity);
        }
    }

 

注意:插入前需要判断是否扩容,此处扩容按照2倍方式扩容


删除

public Integer poll(){
        if(isEmpty()){
            return null;
        }
        Integer ret = array[0];
        swap(0,size-1);
        shiftDown(0);
        return ret;
    }

 

获取堆顶元素

public Integer peek(){
        if(isEmpty()){
            return null;
        }
        Integer ret = array[0];
        return ret;
    }

   获取有效元素个数

public int size(){
        return size;
    }

 

判空


public boolean isEmpty(){
        return size==0;
    }

清空

public void clear(){
        size = 0;
    }

 

堆的应用

PriorityQueue的实现,PriorityQueue底层采用堆数据结构实现的

堆排序,详见基本排序算法总结(Java实现)

Top-k问题

Top-k问题

即求数据中前k个最大或者最小元素,一般情况下数据量都会比较大


如果数据量大使用排序那种方法就不可取了,那么如何解决呢?


1. 使用数据中前k个数据建堆


求前k个最大,建小堆

求前k个最小,建大堆

2. 用剩余的元素依次与堆顶元素比较


求前k个最大,若比堆顶元素大,则替换小堆堆顶元素

求前k个最小,若比堆顶元素小,则替换大堆堆顶元素  



相关文章
|
5月前
|
前端开发 Java
java实现队列数据结构代码详解
本文详细解析了Java中队列数据结构的实现,包括队列的基本概念、应用场景及代码实现。队列是一种遵循“先进先出”原则的线性结构,支持在队尾插入和队头删除操作。文章介绍了顺序队列与链式队列,并重点分析了循环队列的实现方式以解决溢出问题。通过具体代码示例(如`enqueue`入队和`dequeue`出队),展示了队列的操作逻辑,帮助读者深入理解其工作机制。
150 1
|
3月前
|
存储 安全 Java
Java 集合面试题从数据结构到 HashMap 源码剖析详解及长尾考点梳理
本文深入解析Java集合框架,涵盖基础概念、常见集合类型及HashMap的底层数据结构与源码实现。从Collection、Map到Iterator接口,逐一剖析其特性与应用场景。重点解读HashMap在JDK1.7与1.8中的数据结构演变,包括数组+链表+红黑树优化,以及put方法和扩容机制的实现细节。结合订单管理与用户权限管理等实际案例,展示集合框架的应用价值,助你全面掌握相关知识,轻松应对面试与开发需求。
187 3
|
5月前
|
存储 Java 编译器
Java 中 .length 的使用方法:深入理解 Java 数据结构中的长度获取机制
本文深入解析了 Java 中 `.length` 的使用方法及其在不同数据结构中的应用。对于数组,通过 `.length` 属性获取元素数量;字符串则使用 `.length()` 方法计算字符数;集合类如 `ArrayList` 采用 `.size()` 方法统计元素个数。此外,基本数据类型和包装类不支持长度属性。掌握这些区别,有助于开发者避免常见错误,提升代码质量。
415 1
|
8月前
|
存储 监控 Java
JAVA线程池有哪些队列? 以及它们的适用场景案例
不同的线程池队列有着各自的特点和适用场景,在实际使用线程池时,需要根据具体的业务需求、系统资源状况以及对任务执行顺序、响应时间等方面的要求,合理选择相应的队列来构建线程池,以实现高效的任务处理。
326 12
|
9月前
|
存储 缓存 安全
Java 集合江湖:底层数据结构的大揭秘!
小米是一位热爱技术分享的程序员,本文详细解析了Java面试中常见的List、Set、Map的区别。不仅介绍了它们的基本特性和实现类,还深入探讨了各自的使用场景和面试技巧,帮助读者更好地理解和应对相关问题。
137 5
|
10月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
855 9
|
10月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
213 59
|
3月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
44 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
8月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
331 77

热门文章

最新文章