Java 虚拟机 | 内存分配模型|七日打卡

简介: Java 虚拟机 | 内存分配模型|七日打卡

目录

image.png

1. 运行时数据区域


根据《Java虚拟机规范》的规定,Java 虚拟机在执行程序时,会将内存划分为不同的数据区域:


内存区域 线程独占
程序计数寄存器 私有
Java 虚拟机栈 私有
本地方法栈 私有
Java 堆 共享
方法区 共享


image.png

—— 图片引用自网络


1.1 程序计数寄存器(Program Counter Register)


程序计数寄存器记录的是当前线程下一条准备执行执行的字节码行号。当虚拟机在进行顺序执行、分支、循环、函数调用或异常处理时,都会将「下一条字节码指令的行号」存储在程序计数器中。


为什么 Java 虚拟机需要这个程序计数器呢,这是为了保证正确地进行线程切换。操作系统的「时间片轮转机制」会为每个线程分配时间片,当一个线程的时间片用完,或者其他线程提前抢夺 CPU 时间片时,当前线程就会挂起,而将来挂起的线程获得时间片时,就需要通过程序计数器来恢复到正确的指令位置。


程序计数器只在执行 Java 方法时有意义,如果当前线程执行的是 native 方法,程序计数器的值是空(Undefined)。


1.2 虚拟机栈(Java Virtual MachineStack)


虚拟机栈描述的是 Java 方法执行的内存模型。虚拟机在执行方法时会创建一个栈帧(Stack Frame),每个方法从调用到结束的过程,都对应着一个栈帧入栈到出栈的过程。


  • 入栈:创建对应的栈帧,压入虚拟机栈;
  • 出栈:恢复上层方法中的局部变量表和操作数栈,如果有返回值,将返回值入栈,最后调整程序计数器指向方法调用指令的下一条执行。当所有栈帧都出栈后,线程结束。


提示: 栈的默认大小是 1M,可以用虚拟机参数-Xss调整大小。


1.2.1 栈帧


栈帧是支持虚拟机进行方法调用和方法执行的数据结构,每个栈帧都包含四个区域:

  • 1、局部变量表(Local Variable Table)

存放局部变量,当一个变量不再使用时,对应的空间会让出来给其他变量使用,这块区域的大小在编译时确定。

  • 2、操作数栈(Operand Stack)

用于存放字节码指令的操作数,这块区域的大小在编译时确定。在虚拟机的具体实现中,这这块区域可能是寄存器,也可能是栈。所谓 “基于栈的解释执行”,这里的栈指的是操作数栈。

  • 3、动态连接(Dynamic Linking)
  • 4、返回地址

返回地址存放函数调用位置的下一行指令,用于在方法正常返回时返回到上一层方法继续执行。如果是异常返回的话,则是通过异常处理器表来确定。


image.png


—— 引用自 paul.pub/android-dal… 强波(华为)著


1.2.2 栈 vs 寄存器


在《Java虚拟机规范》中,操作数栈是一个栈数据结构,但在虚拟机的具体实现里,也可能是寄存器结构。


  • 基于栈的解释执行 —— Java 虚拟机
  • 基于寄存器的解释执行 —— Android 虚拟机(Dalvik & ART)


易错: 这里的栈和寄存器都是虚拟机的虚拟实现,和 CPU 中的数据寄存器并不是同一个概念。


基于寄存器的虚拟机栈帧中没有操作数栈和局部变量表,取而代之的是虚拟寄存器。与 Java 虚拟机相比,基于寄存器的 Android 虚拟机的指令数明显较少,同时也避免了操作数栈和局部变量表之间的数据移动。


1.2.3 栈的优化技术


  • 编译优化:方法内联

方法内联的就是把目标方法的代码复制到调用位置,避免方法调用的出栈入栈行为。

  • 栈帧数据共享

一般两个栈帧的内存区域是独立的,而在大多数虚拟机实现中,会将两个栈帧中的下层栈帧的「操作数栈」和上层栈帧的「部分局部变量」重叠,这样在方法调用的时候就不用进行额外的参数复制了。

image.png


—— 图片引用自网络


1.3 本地方法栈(Native Method Stacks)


与虚拟机栈类似,区别在于虚拟机栈执行 Java 方法,而本地方法栈执行 native 方法。当虚拟机调用 native 方法时,不会在虚拟机栈中创建栈帧,而是直接动态链接调用 native 方法。


提示: 《Java虚拟机规范》没有强制规定本地方法栈中方法语言、使用方式与数据结构,有的虚拟机(如 HotSpot)直接合并了虚拟机栈和本地方法栈。


1.4 方法区(Method Area)


1.4.1 方法区的数据


方法区主要存放虚拟机加载的类相关数据,包括:


  • 类信息
  • 静态变量
  • 静态常量
  • 运行时常量池
  • 即时编译器生成的代码

「Class 文件常量池」和「运行时常量池」是比较容易混淆的概念。其实它们一个是静态的,一个是动态的。


「Class 文件常量池(Constant Pool Table)」是静态的,指的是编译后存放在 Class 文件常量池中的字面量 & 符号引用,而这些常量会在类加载之后进入运行时常量池。

「运行时常量池」是动态的,Java 不要求常量只能在编译时声明,在运行时同样可以将新的常量加入到常量池中。例如 String#intern()


提示: 所谓字符串常量池属于运行时常量池的一部分。


1.4.2 方法区 ? 永生代 ? 元空间 ?


这三个概念也是比较容易混淆的,简单来说:方法区是虚拟机规定的运行时数据区域,永久代 & 元空间是方法区在不同虚拟机上的具体实现。


以 HotSpot 虚拟机为例:


在 JDK 1.7 之前,HotSpot 虚拟机使用永久代(Permanent Generation)来实现方法区,永久代中存储的都是生命周期较长的数据。永久代可以跟堆一起执行垃圾回收。不过在永久代执行垃圾回收的 “性价比” 并没有新生代高,一般新生代垃圾回收可以回收 70% ~ 95% 的空间,而永久代的垃圾回收率就远低于此。


从 JDK 1.8 开始,HotSpot 虚拟机使用元空间(Metadata)来实现方法区,并且使用了本地内存存储,扩展了方法区的内存上限。


为什么 HotSpot 要使用元空间来代替永久代呢?

因为永久代空间有限,经常出现不够用或者内存溢出异常。而使用本地内存就可以方便扩展方法区的大小。当然,元空间也不是完美的,因为机器总内存是有限的,使用大量的本地内存的话就会挤压堆内存的上限。


1.5 Java 堆(Java Heap)


堆是虚拟机上最大的一块内存,绝大多数对象都是存储在堆上的(Class 对象存储在方法区,满足逃逸分析的对象在栈上分配)。垃圾回收机制操作的主要区域也是堆。


堆和方法区都是线程共享的,为什么 Java 区分出两块区域呢?

这体现的是 动静分离 的思想,堆中存放的是生命周期比较短,经常需要进行垃圾回收的数据;而方法区中存放的是生命周期比较长的数据。将两种数据分开存储,有利于更高效地进行内存管理。


2. 直接内存 / 堆外内存 / 本地内存


这三个概念其实是相同的,直接内存(Direct Memory)不属于 Java 虚拟机规定的运行时数据区域。不受制于 Java 堆大小限制,但是受制于机器总内存。


在 JDK 1.4 NIO 中引入了基于通道(Channel)与缓冲区(Buffer)的 I/O 方式,可以直接通过 native 方法分配一块直接内存,并且创建一个 Java 层 DirectByteBuffer 对象供应用层访问。


3. 内存溢出


3.1 程序计数器


在《Java虚拟机规范》中,程序计数器是 JVM 中唯一不会发生 OOM 的区域。


3.2 栈溢出


虚拟机栈和本地方法栈类似,都可能抛出的两种异常:

  • StackOverflowError 异常: 线程的栈帧深度大于虚拟机允许的最大深度;
  • OutOfMemoryError 异常: 无法申请到足够内存时;


3.3 堆溢出


申请内存空间超出最大堆内存空间时发生堆溢出。应检查是否存在某些对象生命周期过长、持有状态时间过长、存储结构设计不合理等情况,尽量减少冗余 / 不必要的内存消耗。


3.4 方法区溢出


有两种情况会导致方法区内存溢出:

  • 1、运行时常量池溢出
  • 2、加载的类信息溢出


3.5 直接内存溢出


与堆一样,申请的直接内存超过直接内存容量时,也会发生内存溢出。


ByteBuffer.allocateDirect(128*1024*1024)
复制代码
java.lang.OutofMemoryError : Direct buffer memory
复制代码


4. 总结


  • 1、程序计数器是线程私有,描述的是当前线程下一条需要执行的字节码指令行号;
  • 2、虚拟机栈描述的是 Java 方法执行的内存模型;
  • 3、本地方法栈与虚拟机栈类似,区别在于虚拟机栈执行 Java 方法,而本地方法栈执行 native 方法;
  • 4、堆是虚拟机上最大的一块内存,绝大多数对象都是存储在堆上的,垃圾回收机制操作的主要区域也是堆;
  • 5、方法区主要存放虚拟机加载的类相关数据。
目录
相关文章
|
1月前
|
Java 编译器 开发者
深入理解Java内存模型(JMM)及其对并发编程的影响
【9月更文挑战第37天】在Java的世界里,内存模型是隐藏在代码背后的守护者,它默默地协调着多线程环境下的数据一致性和可见性问题。本文将揭开Java内存模型的神秘面纱,带领读者探索其对并发编程实践的深远影响。通过深入浅出的方式,我们将了解内存模型的基本概念、工作原理以及如何在实际开发中正确应用这些知识,确保程序的正确性和高效性。
|
11天前
|
存储 Java 编译器
Java内存模型(JMM)深度解析####
本文深入探讨了Java内存模型(JMM)的工作原理,旨在帮助开发者理解多线程环境下并发编程的挑战与解决方案。通过剖析JVM如何管理线程间的数据可见性、原子性和有序性问题,本文将揭示synchronized关键字背后的机制,并介绍volatile关键字和final关键字在保证变量同步与不可变性方面的作用。同时,文章还将讨论现代Java并发工具类如java.util.concurrent包中的核心组件,以及它们如何简化高效并发程序的设计。无论你是初学者还是有经验的开发者,本文都将为你提供宝贵的见解,助你在Java并发编程领域更进一步。 ####
|
2月前
|
程序员 编译器 C++
【C++核心】C++内存分区模型分析
这篇文章详细解释了C++程序执行时内存的四个区域:代码区、全局区、栈区和堆区,以及如何在这些区域中分配和释放内存。
50 2
|
6天前
|
缓存 算法 Java
本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制
在现代软件开发中,性能优化至关重要。本文聚焦于Java内存管理与调优,介绍Java内存模型、内存泄漏检测与预防、高效字符串拼接、数据结构优化及垃圾回收机制。通过调整垃圾回收器参数、优化堆大小与布局、使用对象池和缓存技术,开发者可显著提升应用性能和稳定性。
21 6
|
10天前
|
存储 缓存 安全
Java内存模型(JMM):深入理解并发编程的基石####
【10月更文挑战第29天】 本文作为一篇技术性文章,旨在深入探讨Java内存模型(JMM)的核心概念、工作原理及其在并发编程中的应用。我们将从JMM的基本定义出发,逐步剖析其如何通过happens-before原则、volatile关键字、synchronized关键字等机制,解决多线程环境下的数据可见性、原子性和有序性问题。不同于常规摘要的简述方式,本摘要将直接概述文章的核心内容,为读者提供一个清晰的学习路径。 ####
30 2
|
2月前
|
安全 Java 应用服务中间件
JVM常见面试题(三):类加载器,双亲委派模型,类装载的执行过程
什么是类加载器,类加载器有哪些;什么是双亲委派模型,JVM为什么采用双亲委派机制,打破双亲委派机制;类装载的执行过程
JVM常见面试题(三):类加载器,双亲委派模型,类装载的执行过程
|
11天前
|
存储 安全 Java
什么是 Java 的内存模型?
Java内存模型(Java Memory Model, JMM)是Java虚拟机(JVM)规范的一部分,它定义了一套规则,用于指导Java程序中变量的访问和内存交互方式。
28 1
|
20天前
|
机器学习/深度学习 算法 物联网
大模型进阶微调篇(一):以定制化3B模型为例,各种微调方法对比-选LoRA还是PPO,所需显存内存资源为多少?
本文介绍了两种大模型微调方法——LoRA(低秩适应)和PPO(近端策略优化)。LoRA通过引入低秩矩阵微调部分权重,适合资源受限环境,具有资源节省和训练速度快的优势,适用于监督学习和简单交互场景。PPO基于策略优化,适合需要用户交互反馈的场景,能够适应复杂反馈并动态调整策略,适用于强化学习和复杂用户交互。文章还对比了两者的资源消耗和适用数据规模,帮助读者根据具体需求选择最合适的微调策略。
|
20天前
|
存储 算法 Java
Java虚拟机(JVM)的内存管理与性能优化
本文深入探讨了Java虚拟机(JVM)的内存管理机制,包括堆、栈、方法区等关键区域的功能与作用。通过分析垃圾回收算法和调优策略,旨在帮助开发者理解如何有效提升Java应用的性能。文章采用通俗易懂的语言,结合具体实例,使读者能够轻松掌握复杂的内存管理概念,并应用于实际开发中。
|
20天前
|
安全 Java
Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧
【10月更文挑战第20天】Java多线程通信新解:本文通过生产者-消费者模型案例,深入解析wait()、notify()、notifyAll()方法的实用技巧,包括避免在循环外调用wait()、优先使用notifyAll()、确保线程安全及处理InterruptedException等,帮助读者更好地掌握这些方法的应用。
14 1