无线系统复杂性增加,AI 成克服挑战的关键

简介: 尽管近年来 AI 在工程,特别是无线系统设计中的地位一直在增加,但随着用例和网络用户数量的增长,也可以预期其地位将会以更快的速度继续上升。

伴随着移动无线技术向 5G 跃进,无线系统设计的复杂性正在不断增加。

当前,由于扩大用户群的需求增加,要加强对宝贵资源优化共享,也加大了无线网络的管理难度,这些调整正迫使工程师们突破传统基于规则的方法、寻找新的解决方案。AI 成为他们应对现代系统挑战的首选解决方案。

近日,MathWorks 首席产品经理 Houman Zarrinkoub 在文章“The key to overcoming complexity in modern wireless systems design”中指出,从管理自动驾驶汽车间的通信、到优化移动通话资源分配,AI 为现代无线应用发展带来了必要的复杂性。

在今天,随着连接到网络的设备数量和范围逐渐扩大,AI 在无线领域的重要性也大大增加。工程师必须准备好将 AI 引入日益复杂的系统,了解 AI 在无线系统中的优势和应用、及实施过程中的最佳实践, Houman Zarrinkoub 表示,这将是无线系统技术未来成功的关键。

1 AI 对无线系统带来的好处
向5G的过渡带来了移动宽带网络速度和质量的优化,以及对工业4.0设备之间在时间上敏感连接的超可靠低速率和大规模机器通信的需求——这是现代网络中三种不同的用例,以及驱动工程师采用AI的竞争力。

随着设备对网络资源的竞争,无线系统的用户和应用程序数量持续增加,曾经被基于人类的规则所理解的线性设计模式不足。但是,通过自动有效地提取任意模式,人工智能可以更好地解决非线性问题,这超出了基于人的方法的能力。

在这种情况下,人工智能是指那些用于识别连接设备、人员通信渠道模式中的机器学习和深度学习系统,这些系统通过给该链接的资源进行优化来提高性能。简而言之,在不利用 AI 方法的情况下为这些不同的用例运行网络,是几乎不可能完成的任务。

除此之外,人工智能对项目管理也有帮助。通过估计源环境的行为,将模拟环境整合到算法模型中,使工程师能用最少的计算资源更快地研究系统的主要影响,从而为探索设计和后续迭代留下了更多时间,降低了成本和开发的时间。
image.png
2 在无线系统中应用 AI 的最佳实践
进入应用阶段,数据大小和质量对 AI 模型的有效部署起到至关重要的作用。

为了处理一系列现实世界中的场景,这些模型需要使用广泛的数据进行训练。通过基于基元合成新数据,或从无线信号中提取,无线系统应用程序也会为 5G 网络设计人员提供稳健训练 AI 所需要的数据变化。如果没有大型训练数据集、并在此基础上对不同的算法进行数据迭代,可能会导致最终效果是狭窄的局部优化,而不是对整体实现全局优化。

此外,在现场测试 AI 模型的稳健方法也很关键。

测试 AI 技术所需的信号变化是其中的一个问题,在狭窄的局部地理环境中捕获的信号,可能会对工程师优化设计质量的方式产生不利影响。如果没有现场迭代,个别案例的参数也将无法用于针对特定位置优化 AI,从而对呼叫性能产生负面影响。

3 无线世界里 AI 的主要应用领域
在电信和汽车等领域的数字化转型也需要 AI 的参与,AI 也是这些应用的主要驱动力。

随着智能城市、电信网络和自动驾驶汽车 (AV) 等应用程序的连接,如果将电子通信放置在曾经以机械为导向的区域中时,虽然能够产生大量的数据,但加入的网络资源也会变得捉襟见肘。

在电信领域,人工智能部署在两个层面——物理层 (PHY) 和 PHY 之上,其中,用于提高连接两个用户线路性能的 AI 应用称为在 PHY 操作。AI 技术在物理层的应用包括有数字预失真、信道估计和信道资源优化,以及在呼叫期间自动调整收发器参数,也可以称为自动编码器设计。

信道优化是指增强两个设备之间的连接,特别是网络基础设施和用户设备之间的连接。通常,这也意味着使用 AI 通过指纹识别和通道状态信息压缩等技术,来克服局部环境中的信号变异性。

通过指纹识别,AI 可将干扰映射到室内环境中的传播模式(由个人进入引起)来优化无线网络的定位,AI 会根据这些个性化的 5G 信号变化来估计用户的位置。同时,信道状态信息压缩能通过 AI 压缩从用户设备到基站的反馈数据,确保通知基站试图改善通话性能的反馈回路不超过可用带宽,从而导致通话中断。

Above-PHY 主要用于网络管理和资源分配,如调度、波束管理和频谱分配等应用,是指管理和优化核心系统资源的功能,可用于网络中相互竞争的用户和用例。随着网络用户和用例数量的增加,网络设计者已经转向人工智能技术,以便实时响应分配需求。

在汽车领域中,使用 AI 进行无线连接让安全自动驾驶成为可能。自动驾驶汽车 (AV) 依靠来自多个来源的数据,包括激光雷达、雷达和无线传感器等来解释它们所处的环境。自动驾驶汽车中的硬件需要处理众多竞争信号的数据,而通过 AI 就可以实现传感器融合来融合竞争信号,使车辆软件能够理解其位置,确定自身同环境的交互方式。

随着无线技术用例的扩展,在这些系统中应用人工智能的需求也随之增加。没有 AI,那么如 5G、自动驾驶汽车和物联网应用等系统也将不具备有效运行所需的复杂性。尽管近年来 AI 在工程,特别是无线系统设计中的地位一直在增加,但随着用例和网络用户数量的增长,也可以预期其地位将会以更快的速度继续上升。

相关文章
|
21天前
|
机器学习/深度学习 数据采集 人工智能
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】随着人工智能的发展,深度学习技术正逐步应用于教育领域,特别是个性化学习系统中。通过分析学生的学习数据,深度学习模型能够精准预测学生的学习表现,并为其推荐合适的学习资源和规划学习路径,从而提供更加高效、有趣和个性化的学习体验。
78 9
|
1月前
|
人工智能 自然语言处理 机器人
对话阿里云 CIO 蒋林泉:AI 时代,企业如何做好智能化系统建设?
10 月 18 日, InfoQ《C 位面对面》栏目邀请到阿里云 CIO 及 aliyun.com 负责人蒋林泉(花名:雁杨),就 AI 时代企业 CIO 的角色转变、企业智能化转型路径、AI 落地实践与人才培养等主题展开了讨论。
794 67
对话阿里云 CIO 蒋林泉:AI 时代,企业如何做好智能化系统建设?
|
1月前
|
存储 人工智能 自然语言处理
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
高级 RAG 技术:提升生成式 AI 系统输出质量与性能鲁棒性【预检索、检索、检索后、生成优化等】
|
20天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗领域的革命:智能诊断系统的未来
在科技日新月异的今天,人工智能(AI)技术正逐渐渗透到我们生活的每一个角落,其中医疗领域尤为显著。本文将探讨AI在医疗诊断中的应用及其带来的变革,重点介绍智能诊断系统的发展现状与未来趋势。通过深入浅出的方式,我们将揭示AI如何改变传统医疗模式,提高诊断效率和准确性,最终造福广大患者。
|
26天前
|
人工智能 API 决策智能
swarm Agent框架入门指南:构建与编排多智能体系统的利器 | AI应用开发
Swarm是OpenAI在2024年10月12日宣布开源的一个实验性质的多智能体编排框架。其核心目标是让智能体之间的协调和执行变得更轻量级、更容易控制和测试。Swarm框架的主要特性包括轻量化、易于使用和高度可定制性,非常适合处理大量独立的功能和指令。【10月更文挑战第15天】
187 6
|
1月前
|
人工智能 安全 自动驾驶
【通义】AI视界|英特尔和AMD“史无前例”首次合作,组建X86生态系统咨询小组
本文概览了近期科技领域的五大热点新闻,包括联想与Meta合作推出个人AI智能体“AI Now”,英特尔和AMD首次合作组建X86生态系统咨询小组,特斯拉计划大规模生产自动驾驶出租车,前Palantir首席信息安全官加盟OpenAI,以及Meta因涉嫌损害青少年心理健康面临美国多州诉讼。更多资讯,请访问通义平台。
|
19天前
|
人工智能 自然语言处理 安全
AI技术在智能客服系统中的应用与挑战
【10月更文挑战第28天】本文将深入探讨人工智能(AI)技术在智能客服系统中的应用及其面临的挑战。我们将通过实例分析,了解AI如何改善客户服务体验,提高效率和降低成本。同时,我们也将关注AI在实际应用中可能遇到的问题,如语义理解、情感识别和数据安全等,并提出相应的解决方案。
|
1月前
|
数据采集 人工智能 测试技术
还在死磕AI咒语?北大-百川搞了个自动提示工程系统PAS
【10月更文挑战第4天】北京大学和百川智能研究人员开发了一种名为PAS的即插即用自动提示工程(APE)系统,利用高质量数据集训练的大型语言模型(LLMs),在基准测试中取得了显著成果,平均提升了6.09个百分点。PAS仅需9000个数据点即可实现顶尖性能,并能自主生成提示增强数据,提高了灵活性和效率。尽管存在训练数据质量和提示多样性等方面的潜在局限性,PAS仍为解决提示工程挑战提供了有前景的方法,有望提升LLM的可用性和有效性。论文详见:https://arxiv.org/abs/2407.06027。
45 3
|
21天前
|
安全 搜索推荐 机器学习/深度学习
AI赋能教育:深度学习在个性化学习系统中的应用
【10月更文挑战第26天】在人工智能的推动下,个性化学习系统逐渐成为教育领域的重要趋势。深度学习作为AI的核心技术,在构建个性化学习系统中发挥关键作用。本文探讨了深度学习在个性化推荐系统、智能辅导系统和学习行为分析中的应用,并提供了代码示例,展示了如何使用Keras构建模型预测学生对课程的兴趣。尽管面临数据隐私和模型可解释性等挑战,深度学习仍有望为教育带来更个性化和高效的学习体验。
53 0
|
29天前
|
人工智能 自然语言处理 机器人
对话阿里云CIO蒋林泉:AI时代,企业如何做好智能化系统建设?
10月18日, InfoQ《C 位面对面》栏目邀请到阿里云CIO及aliyun.com负责人蒋林泉(花名:雁杨),就AI时代企业CIO的角色转变、企业智能化转型路径、AI落地实践与人才培养等主题展开了讨论。

热门文章

最新文章

下一篇
无影云桌面