java8特性,lambda表达式,简写的演变及应用

简介: 虽然可以使用Lambda表达式对某些接口进行简单的实现,但是并不是所有的接口都可以用Lambda表达式来实现,要求接口中定义的必须要实现的抽象方法==只能是一个==在JAVA8中 ,对接口加了一个新特性:default可以使用default对接口方法进行修饰,被修饰的方法在接口中可以默认实现
🍬 博主介绍
👨‍🎓 博主主页: chad_chang的主页
✨主攻领域:【大数据】【java】【python】【面试分析】

@[toc]

lambda表达式

1.1.简介

1.1.1.什么是Lambda?

Lambda是JAVA 8添加的新特性,说白了,Lambda是一个匿名函数

1.1.2.为什么使用Lambda

使用Lambda表达式可以对一个接口的方法进行非常简洁的实现

1.1.3.Lambda对接口的要求

虽然可以使用Lambda表达式对某些接口进行简单的实现,但是并不是所有的接口都可以用Lambda表达式来实现,要求接口中定义的必须要实现的抽象方法==只能是一个==
在JAVA8中 ,对接口加了一个新特性:default
可以使用default对接口方法进行修饰,被修饰的方法在接口中可以默认实现

1.1.4.@FunctionalInterface

修饰函数式接口的,接口中的抽象方法只有一个

1.2.基本语法

1.2.1.语法格式

(parameters) -> expression

(parameters) -> { statements; }
() 用来描述参数列表
{} 用来描述方法体 有时可以省略
-> lambda运算符

1.2.2.准备工作: 创建接口

/**
 * 无参数无返回值接口
 */
@FunctionalInterface
interface LambdaNoneReturnNoneParmeter {

    void test();
}

/**
 * 无返回值有单个参数
 */
@FunctionalInterface
interface LambdaNoneReturnSingleParmeter {

    void test(int n);
}

/**
 * 无返回值 多个参数的接口
 */
@FunctionalInterface
interface LambdaNoneReturnMutipleParmeter {

    void test(int a,int b);
}

/**
 * 有返回值 无参数接口
 */
@FunctionalInterface
interface LambdaSingleReturnNoneParmeter {

    int test();
}

/**
 * 有返回值 有单个参数的接口
 */
@FunctionalInterface
interface LambdaSingleReturnSingleParmeter {

    int test(int n);
}

/**
 * 有返回值 有多个参数的接口
 */
@FunctionalInterface
interface LambdaSingleReturnMutipleParmeter {

    int test(int a,int b);
}

1.2.3.创建类Demo

import org.junit.Test;

public class Demo {

    @Test
    public void test01() {

        LambdaSingleReturnMutipleParmeter lambda1 = new LambdaSingleReturnMutipleParmeter() {
            @Override
            public int test(int a, int b) {
                return a + b;
            }
        };

        int result = lambda1.test(1, 2);
        System.out.println(result);
    }
}

==注意==:运行,会出现以下错误
在这里插入图片描述
==解决方法==
修改工作空间
修改工作空间,路径为:.idea --> workspace.xml

找到标签 。在标签里加一行:

<property name="dynamic.classpath" value="true" />

如下图:
在这里插入图片描述
此刻可以顺利运行,但是这不是我们的重点;
重点是==lambda的学习==。

1.3语法精简

1.3.1. lambda写法

在这里插入图片描述
在Demo类中继续写以下代码:

    @Test
    public void test02(){
        LambdaSingleReturnMutipleParmeter lambda2 = (int a, int b) -> {
                return a + b;
        };

        int result2 = lambda2.test(1, 2);
        System.out.println(result2);
    }
}

1.3.2. 参数类型精简

因为在接口的方法中, 已经定义类参数的类型, 所以在lambda表达式中参数的类型可以省略
    @Test
    public void test02(){
        LambdaSingleReturnMutipleParmeter lambda2 = (a, b) -> {
                return a + b;
        };

        int result2 = lambda2.test(1, 2);
        System.out.println(result2);
    }
}

1.3.3. 参数小括号精简

如果参数列表中, 参数的个数只有==一个==, 此时小括号可以省略;

    @Test
    public void test03(){
    //一个参数一个返回值
        LambdaSingleReturnSingleParmeter lambda3 = a -> {return 10;};

        int result3 = lambda3.test(1);
        System.out.println(result3);
    }

1.3.4.方法大括号精简

如果方法中只有==一条语句==, 此时大括号也可以省略

1.3.5.大括号精简补充

如果方法体中唯一的一条语句是一个返回结果语句,
则省略大括号的同时 也必须省略return关键字

    @Test
    public void test04(){
    //无参一个返回值
        LambdaSingleReturnNoneParmeter lambda4 =()  -> 10;

        int result4 = lambda4.test();
        System.out.println(result4);
    }

1.4.语法进阶

1.4.1.方法引用(静态方法和普通方法)

1.4.1.1.why

在实际应用过程中, 一个接口在很多地方都会调用同一个实现, 例如

LambdaSingleReturnMutipleParmeter lambda1 = (a, b) -> a + b;
LambdaSingleReturnMutipleParmeter lambdab = (a, b) -> a * b;

这样一来每次都要写上具体的实现方法, 如果需求变更, 则每一处都需要更改, 基于这种情况, 可以将后续的实现更改为自定义的方法, 需要时直接调用即可.

1.4.1.2.what

方法引用:
可以快速的将一个lambda表达式的实现指向一个已经实现的方法
方法的隶属者 如果是静态方法, 隶属者就是一个类, 其他的话都是隶属对象
语法: ==方法的隶属者::方法名==
注意:

1 引用的方法中, 参数的个数和类型一定要和接口中定义的方法一致
2 返回值的类型也一定要和接口中的方法一致

1.4.1.3.how

1.4.1.3.1.静态方法
package stream.lambda.cn.itcast.b;

public class Demo {
    public static void main(String[] args) {
        // 精简前
        LambdaSingleReturnMutipleParmeter lambda1 = (a, b) -> a + b;
        LambdaSingleReturnMutipleParmeter lambda2 = (a, b) -> a * b;

        // 精简后
        LambdaSingleReturnMutipleParmeter lambda3 = (a, b) -> MyStaticClass.add(a, b);
        LambdaSingleReturnMutipleParmeter lambda4 = MyStaticClass::multiplication;
    }


}

// 静态方法类
class MyStaticClass {
    public static int add(int x, int y) {
        return x + y;
    }

    public static int multiplication(int x, int y) {
        return x * y;
    }
}


/**
 * 有返回值 有多个参数的接口
 */
@FunctionalInterface
interface LambdaSingleReturnMutipleParmeter {

    int test(int a, int b);
}
1.4.1.3.2.非静态普通方法
package stream.lambda.cn.itcast.c;

public class Demo {
    public static void main(String[] args) {
        // 精简前
        LambdaSingleReturnMutipleParmeter lambda1 = (a, b) -> a + b;
        LambdaSingleReturnMutipleParmeter lambda2 = (a, b) -> a * b;

        // 精简后
        MyNotStaticClass myNotStaticClassObj = new MyNotStaticClass();
        LambdaSingleReturnMutipleParmeter lambda3 = (a, b) -> myNotStaticClassObj.add(a, b);
        LambdaSingleReturnMutipleParmeter lambda4 = myNotStaticClassObj::multiplication;
        int result3 = lambda3.test(10, 20);
        int result4 = lambda4.test(10, 20);
        System.out.println("result3 = " + result3);
        System.out.println("result4 = " + result4);
    }
}

// 自定义非静态类
class MyNotStaticClass {
    public int add(int x, int y) {
        return x + y;
    }

    public int multiplication(int x, int y) {
        return x * y;
    }
}

/**
 * 有返回值 有多个参数的接口
 */
@FunctionalInterface
interface LambdaSingleReturnMutipleParmeter {
    int test(int a, int b);
}
目录
相关文章
|
2月前
|
人工智能 算法 Java
Java与AI驱动区块链:构建智能合约与去中心化AI应用
区块链技术和人工智能的融合正在开创去中心化智能应用的新纪元。本文深入探讨如何使用Java构建AI驱动的区块链应用,涵盖智能合约开发、去中心化AI模型训练与推理、数据隐私保护以及通证经济激励等核心主题。我们将完整展示从区块链基础集成、智能合约编写、AI模型上链到去中心化应用(DApp)开发的全流程,为构建下一代可信、透明的智能去中心化系统提供完整技术方案。
246 3
|
2月前
|
消息中间件 缓存 Java
Spring框架优化:提高Java应用的性能与适应性
以上方法均旨在综合考虑Java Spring 应该程序设计原则, 数据库交互, 编码实践和系统架构布局等多角度因素, 旨在达到高效稳定运转目标同时也易于未来扩展.
126 8
|
3月前
|
人工智能 Java API
Java与大模型集成实战:构建智能Java应用的新范式
随着大型语言模型(LLM)的API化,将其强大的自然语言处理能力集成到现有Java应用中已成为提升应用智能水平的关键路径。本文旨在为Java开发者提供一份实用的集成指南。我们将深入探讨如何使用Spring Boot 3框架,通过HTTP客户端与OpenAI GPT(或兼容API)进行高效、安全的交互。内容涵盖项目依赖配置、异步非阻塞的API调用、请求与响应的结构化处理、异常管理以及一些面向生产环境的最佳实践,并附带完整的代码示例,助您快速将AI能力融入Java生态。
485 12
|
3月前
|
安全 Java API
Java SE 与 Java EE 区别解析及应用场景对比
在Java编程世界中,Java SE(Java Standard Edition)和Java EE(Java Enterprise Edition)是两个重要的平台版本,它们各自有着独特的定位和应用场景。理解它们之间的差异,对于开发者选择合适的技术栈进行项目开发至关重要。
411 1
|
存储 并行计算 Java
Java8特性大全(最新版)
Java8特性大全(最新版)
|
2月前
|
JSON 网络协议 安全
【Java】(10)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
161 1
|
2月前
|
JSON 网络协议 安全
【Java基础】(1)进程与线程的关系、Tread类;讲解基本线程安全、网络编程内容;JSON序列化与反序列化
几乎所有的操作系统都支持进程的概念,进程是处于运行过程中的程序,并且具有一定的独立功能,进程是系统进行资源分配和调度的一个独立单位一般而言,进程包含如下三个特征。独立性动态性并发性。
180 1
|
3月前
|
数据采集 存储 弹性计算
高并发Java爬虫的瓶颈分析与动态线程优化方案
高并发Java爬虫的瓶颈分析与动态线程优化方案
Java 数据库 Spring
147 0
|
3月前
|
算法 Java
Java多线程编程:实现线程间数据共享机制
以上就是Java中几种主要处理多线程序列化资源以及协调各自独立运行但需相互配合以完成任务threads 的技术手段与策略。正确应用上述技术将大大增强你程序稳定性与效率同时也降低bug出现率因此深刻理解每项技术背后理论至关重要.
234 16