Re17:读论文 Challenges for Information Extraction from Dialogue in Criminal Law

简介: Re17:读论文 Challenges for Information Extraction from Dialogue in Criminal Law

本文是2021年ACL论文,任务是从听证会记录文本中抽取事实信息factual information(11个手动挑选出的特征),分别测试了无监督方法、弱监督方法和使用预训练模型的方法在这一任务上的效果。

数据集是自制数据,是free-form dialogue of California parole hearings,一部分数据被标注了11个特征。


本文使用的算法为:


  1. an unsupervised data programming paradigm extended to weak supervision:无监督 Snorkel,有监督 WSLF(逻辑回归)
  2. pretrained question answering models based on DistilBERT and Longformer:QA1-2
  3. classification models based on BERT each fine-tuned to predict a single task:Task-FT

image.png


F1值在计算时,Date和numerical经过了分箱。


相关文章
|
算法 计算机视觉 知识图谱
ACL2022:A Simple yet Effective Relation Information Guided Approach for Few-Shot Relation Extraction
少样本关系提取旨在通过在每个关系中使用几个标记的例子进行训练来预测句子中一对实体的关系。最近的一些工作引入了关系信息
130 0
|
人工智能 自然语言处理 算法
UIE: Unified Structure Generation for Universal Information Extraction 论文解读
信息提取受到其不同目标、异构结构和特定需求模式的影响。本文提出了一个统一的文本到结构生成框架,即UIE,该框架可以对不同的IE任务进行统一建模,自适应生成目标结构
528 0
|
机器学习/深度学习 存储 人工智能
Event Extraction by Answering (Almost) Natural Questions论文解读
事件抽取问题需要检测事件触发词并抽取其相应的论元。事件论元抽取中的现有工作通常严重依赖于作为预处理/并发步骤的实体识别,这导致了众所周知的错误传播问题。
131 0
|
机器学习/深度学习 自然语言处理 算法
RCEE: Event Extraction as Machine Reading Comprehension 论文解读
事件提取(Event extraction, EE)是一项重要的信息提取任务,旨在提取文本中的事件信息。以前的EE方法通常将其建模为分类任务,这些任务需要大量数据,并且存在数据稀缺问题。在本文中,我们提出了一种新的EE学习范式,将其明确地转换为机器阅读理解问题(MRC)。
227 0
|
机器学习/深度学习 人工智能 算法
【读书笔记】Algorithms for Decision Making(1)
我自己的粗浅看法:机器学习要不是拟合逼近(经常提及的machine learning),要不就是决策过程(reinforcement learning),这本书主要讲述后者的前世今生。
331 0
【读书笔记】Algorithms for Decision Making(1)
|
机器学习/深度学习 算法 vr&ar
【读书笔记】Algorithms for Decision Making(9)
与基于模型的方法相比,无模型方法不需要构建转移函数和奖励函数的显性表示,而是直接作用于值函数建模。进一步地,考虑模拟学习来重建奖励函数。
【读书笔记】Algorithms for Decision Making(9)
|
机器学习/深度学习 自然语言处理 异构计算
Re20:读论文 What About the Precedent: An Information-Theoretic Analysis of Common Law
Re20:读论文 What About the Precedent: An Information-Theoretic Analysis of Common Law
Re20:读论文 What About the Precedent: An Information-Theoretic Analysis of Common Law
|
机器学习/深度学习 自然语言处理 PyTorch
Re6:读论文 LeSICiN: A Heterogeneous Graph-based Approach for Automatic Legal Statute Identification fro
Re6:读论文 LeSICiN: A Heterogeneous Graph-based Approach for Automatic Legal Statute Identification fro
Re6:读论文 LeSICiN: A Heterogeneous Graph-based Approach for Automatic Legal Statute Identification fro
|
机器学习/深度学习 数据可视化 PyTorch
Re27:读论文 LADAN Distinguish Confusing Law Articles for Legal Judgment Prediction
Re27:读论文 LADAN Distinguish Confusing Law Articles for Legal Judgment Prediction
Re27:读论文 LADAN Distinguish Confusing Law Articles for Legal Judgment Prediction
|
搜索推荐 PyTorch 算法框架/工具
Re30:读论文 LegalGNN: Legal Information Enhanced Graph Neural Network for Recommendation
Re30:读论文 LegalGNN: Legal Information Enhanced Graph Neural Network for Recommendation
Re30:读论文 LegalGNN: Legal Information Enhanced Graph Neural Network for Recommendation