使用 select 切换协程

简介: 在 Go 中,可以通过关键字select来完成从不同的并发执行的协程中获取值,它和switch控制语句非常相似,也被称作通信开关;它的行为像是“你准备好了吗”的轮询机制;select监听进入通道的数据,也可以是用通道发送值的时候。

在 Go 中,可以通过关键字select来完成从不同的并发执行的协程中获取值,它和switch控制语句非常相似,也被称作通信开关;它的行为像是“你准备好了吗”的轮询机制;select监听进入通道的数据,也可以是用通道发送值的时候。


语法格式:

select {
case u:= <- ch1:
        ...
case v:= <- ch2:
        ...
        ...
default: // no value ready to be received
        ...
}


default 语句是可选的;fallthrough 行为,和普通的 switch 相似,是不允许的。在任何一个 case 中执行 break 或者 return,select 就结束了。


select 做的就是:选择处理列出的多个通信情况中的一个。


  • 如果都阻塞了,会等待直到其中一个可以处理
  • 如果多个可以处理,随机选择一个
  • 如果没有通道操作可以处理并且写了default 语句,它就会执行:default 永远是可运行的(这就是准备好了,可以执行)。


select 中使用发送操作并且有 default 可以确保发送不被阻塞!如果没有 default,select 就会一直阻塞。


select 语句实现了一种监听模式,通常用在(无限)循环中;在某种情况下,通过 break 语句使循环退出。

程序示例

package main
import (
    "fmt"
    "time"
)
func main() {
    ch1 := make(chan int)
    ch2 := make(chan int)
    go pump1(ch1)
    go pump2(ch2)
    go suck(ch1, ch2)
    time.Sleep(1e9)
}
func pump1(ch chan int) {
    for i := 0; ; i++ {
        ch <- i * 2
    }
}
func pump2(ch chan int) {
    for i := 0; ; i++ {
        ch <- i + 5
    }
}
func suck(ch1, ch2 chan int) {
    for {
        select {
        case v := <-ch1:
            fmt.Printf("Received on channel 1: %d\n", v)
        case v := <-ch2:
            fmt.Printf("Received on channel 2: %d\n", v)
        }
    }
}

在程序 goroutine_select.go 中有 2 个通道 ch1ch2,三个协程 pump1()pump2()suck()。这是一个典型的生产者消费者模式。在无限循环中,ch1ch2 通过 pump1()pump2() 填充整数;suck() 也是在无限循环中轮询输入的,通过 select 语句获取 ch1ch2 的整数并输出。选择哪一个 case 取决于哪一个通道收到了信息。程序在 main 执行 1 秒后结束。


运行结果:

Received on channel 2: 148120
Received on channel 2: 148121
Received on channel 2: 148122
Received on channel 2: 148123
Received on channel 2: 148124
Received on channel 2: 148125
Received on channel 2: 148126
Received on channel 1: 296784
Received on channel 2: 148127
Received on channel 2: 148128
Received on channel 2: 148129
Received on channel 1: 296786
Received on channel 1: 296788


一秒内的输出非常惊人,如果我们给它计数(goroutine_select2.go),得到了 296788 个左右的数字。

相关文章
|
4月前
|
Go
select实战指南:协程切换技术
select实战指南:协程切换技术
23 0
|
24天前
|
网络协议 调度 开发者
python中gevent基于协程的并发编程模型详细介绍
`gevent`是Python的第三方库,提供基于协程的并发模型,适用于I/O密集型任务的高效异步编程。其核心是协程调度器,在单线程中轮流执行多个协程,通过非阻塞I/O实现高并发。主要特点包括协程调度、事件循环的I/O模型、同步/异步编程支持及易用性。示例代码展示了一个使用`gevent`实现的异步TCP服务器,当客户端连接时,服务器以协程方式处理请求,实现非阻塞通信。
14 0
|
2月前
|
并行计算 调度 开发者
深入浅出Python协程:提升你的异步编程效率
在当今快速发展的软件开发领域,异步编程已成为提高程序性能和用户体验的关键技术。Python,作为一门广泛使用的高级编程语言,其协程(Coroutine)功能为开发者提供了强大的异步编程工具。本文将从协程的基本概念入手,通过实例深入浅出地讲解如何在Python中有效利用协程来提升异步编程的效率和可读性。我们将探讨协程的工作原理、与传统多线程/多进程相比的优势,以及如何在实际项目中应用协程来解决复杂的并发问题。通过本文的学习,读者将能够掌握Python协程的核心知识,为构建高效、可维护的异步应用奠定坚实基础。
|
15天前
|
调度 Python
Python多线程、多进程与协程面试题解析
【4月更文挑战第14天】Python并发编程涉及多线程、多进程和协程。面试中,对这些概念的理解和应用是评估候选人的重要标准。本文介绍了它们的基础知识、常见问题和应对策略。多线程在同一进程中并发执行,多进程通过进程间通信实现并发,协程则使用`asyncio`进行轻量级线程控制。面试常遇到的问题包括并发并行混淆、GIL影响多线程性能、进程间通信不当和协程异步IO理解不清。要掌握并发模型,需明确其适用场景,理解GIL、进程间通信和协程调度机制。
30 0
|
2月前
|
API 数据处理 调度
Python中的异步编程与协程应用
传统的Python编程在处理IO密集型任务时常常面临效率低下的问题,而异步编程和协程技术的引入为解决这一问题提供了有效的途径。本文将介绍Python中异步编程的基本概念,深入探讨asyncio库的使用以及协程在实际项目中的应用,旨在帮助开发者更好地理解和运用异步编程技术。
|
2月前
|
调度 Python
python协程—asyncio模块
python协程—asyncio模块
24 0
|
2月前
|
API 开发者 Python
深入浅出Python协程:提升并发编程效率
在当今高速发展的互联网时代,高并发成为了软件开发中的一个重要需求。本文将引领读者深入理解Python中的协程(Coroutine)概念,探讨其在并发编程中的应用及优势。我们将从协程的基础概念出发,通过实例讲解如何使用asyncio库来编写高效的异步代码。文章旨在帮助读者掌握协程的工作原理和使用方法,从而在实际开发中能够更好地利用Python进行高效的并发编程。
|
2月前
|
数据采集 调度 开发者
深入浅出Python协程:提升并发编程效率
本文旨在为读者揭开Python协程的神秘面纱,通过深入浅出的方式阐述其工作原理及应用场景。不同于传统的技术文章摘要,我们将以一种独特的视角,将协程比作一场精心编排的交响乐,其中每一个乐章都是一个独立的任务,共同演绎出并发编程的华丽篇章。文章将从协程的基本概念切入,通过对比线程和进程,逐步深入到事件循环、异步IO等核心机制,最后通过案例分析,让读者能够掌握使用Python协程处理高并发任务的技巧,从而提升编程效率。
|
2月前
|
程序员 开发者 Python
深入浅出Python协程:提升代码效率的秘诀
【2月更文挑战第12天】 在当今追求高效编程的时代,Python协程成为了开发者提升代码执行效率的重要工具。本文将以通俗易懂的方式,深入探讨Python协程的原理、使用方法及其在实际开发中的应用场景。通过对比传统同步编程和异步编程的差异,我们将揭示协程如何在不牺牲代码可读性的前提下,显著提高程序的运行效率。文章旨在为Python开发者提供一份全面、实用的协程学习指南,帮助他们在实际项目中更好地利用这一强大的特性。
22 2
|
3月前
|
调度 Python
什么是Python中的协程(Coroutine)?如何使用`async`和`await`进行协程编程?
什么是Python中的协程(Coroutine)?如何使用`async`和`await`进行协程编程?
27 0