Linux网络编程之UDP

简介:

server.c

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <arpa/inet.h>


#define SERVER_PORT 8888 
#define MAX_MSG_SIZE 1024 


void udps_respon(int sockfd) 

struct sockaddr_in addr; 
int addrlen,n; 
char msg[MAX_MSG_SIZE]; 


while(1) 
{ /* 从网络上读,并写到网络上 */ 
bzero(msg,sizeof(msg)); // 初始化,清零
addrlen = sizeof(struct sockaddr); 
n=recvfrom(sockfd,msg,MAX_MSG_SIZE,0,(struct sockaddr*)&addr,&addrlen); // 从客户端接收消息
msg[n]=0; 
/* 显示服务端已经收到了信息 */ 
fprintf(stdout,"Server have received %s",msg); // 显示消息




int main(void) 

int sockfd; 
struct sockaddr_in addr; 


/* 服务器端开始建立socket描述符 */ 
sockfd=socket(AF_INET,SOCK_DGRAM,0); 
if(sockfd<0) 

fprintf(stderr,"Socket Error:%s\n",strerror(errno)); 
exit(1); 



/* 服务器端填充 sockaddr结构 */ 
bzero(&addr,sizeof(struct sockaddr_in)); 
addr.sin_family=AF_INET; 
addr.sin_addr.s_addr=htonl(INADDR_ANY); 
addr.sin_port=htons(SERVER_PORT); 


/* 捆绑sockfd描述符 */ 
if(bind(sockfd,(struct sockaddr *)&addr,sizeof(struct sockaddr_in))<0) 

fprintf(stderr,"Bind Error:%s\n",strerror(errno)); 
exit(1); 



udps_respon(sockfd); // 进行读写操作
close(sockfd); 


client.c:

#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <arpa/inet.h>


#define SERVER_PORT 8888 
#define MAX_BUF_SIZE 1024 


void udpc_requ(int sockfd,const struct sockaddr_in *addr,int len) 

char buffer[MAX_BUF_SIZE]; 
int n; 
while(1) 
{ /* 从键盘读入,写到服务端 */ 
printf("Please input char:\n");
fgets(buffer,MAX_BUF_SIZE,stdin); 
sendto(sockfd,buffer,strlen(buffer),0,addr,len); 
bzero(buffer,MAX_BUF_SIZE); 




int main(int argc,char **argv) 

int sockfd; 
struct sockaddr_in addr; 


if(argc!=2) 

fprintf(stderr,"Usage:%s server_ip\n",argv[0]); 
exit(1); 
}


/* 建立 sockfd描述符 */ 
sockfd=socket(AF_INET,SOCK_DGRAM,0); 
if(sockfd<0) 

fprintf(stderr,"Socket Error:%s\n",strerror(errno)); 
exit(1); 



/* 填充服务端的资料 */ 
bzero(&addr,sizeof(struct sockaddr_in)); 
addr.sin_family=AF_INET; 
addr.sin_port=htons(SERVER_PORT);
if(inet_aton(argv[1],&addr.sin_addr)<0)  /*inet_aton函数用于把字符串型的IP地址转化成网络2进制数字*/ 

fprintf(stderr,"Ip error:%s\n",strerror(errno)); 
exit(1); 



udpc_requ(sockfd,&addr,sizeof(struct sockaddr_in)); // 进行读写操作
close(sockfd); 

目录
相关文章
|
3月前
|
监控 安全 Linux
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景
在 Linux 系统中,网络管理是重要任务。本文介绍了常用的网络命令及其适用场景,包括 ping(测试连通性)、traceroute(跟踪路由路径)、netstat(显示网络连接信息)、nmap(网络扫描)、ifconfig 和 ip(网络接口配置)。掌握这些命令有助于高效诊断和解决网络问题,保障网络稳定运行。
153 2
|
5天前
|
网络协议 算法 安全
Go语言的网络编程与TCP_UDP
Go语言由Google开发,旨在简单、高效和可扩展。本文深入探讨Go语言的网络编程,涵盖TCP/UDP的基本概念、核心算法(如滑动窗口、流量控制等)、最佳实践及应用场景。通过代码示例展示了TCP和UDP的实现,并讨论了其在HTTP、DNS等协议中的应用。最后,总结了Go语言网络编程的未来发展趋势与挑战,推荐了相关工具和资源。
|
1月前
|
Linux 网络性能优化 网络安全
Linux(openwrt)下iptables+tc工具实现网络流量限速控制(QoS)
通过以上步骤,您可以在Linux(OpenWrt)系统中使用iptables和tc工具实现网络流量限速控制(QoS)。这种方法灵活且功能强大,可以帮助管理员有效管理网络带宽,确保关键业务的网络性能。希望本文能够为您提供有价值的参考。
96 28
|
1月前
|
网络协议 Unix Linux
深入解析:Linux网络配置工具ifconfig与ip命令的全面对比
虽然 `ifconfig`作为一个经典的网络配置工具,简单易用,但其功能已经不能满足现代网络配置的需求。相比之下,`ip`命令不仅功能全面,而且提供了一致且简洁的语法,适用于各种网络配置场景。因此,在实际使用中,推荐逐步过渡到 `ip`命令,以更好地适应现代网络管理需求。
42 11
|
1月前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
112 15
|
2月前
|
Ubuntu Unix Linux
Linux网络文件系统NFS:配置与管理指南
NFS 是 Linux 系统中常用的网络文件系统协议,通过配置和管理 NFS,可以实现跨网络的文件共享。本文详细介绍了 NFS 的安装、配置、管理和常见问题的解决方法,希望对您的工作有所帮助。通过正确配置和优化 NFS,可以显著提高文件共享的效率和安全性。
274 7
|
3月前
|
监控 网络协议 网络性能优化
网络通信的核心选择:TCP与UDP协议深度解析
在网络通信领域,TCP(传输控制协议)和UDP(用户数据报协议)是两种基础且截然不同的传输层协议。它们各自的特点和适用场景对于网络工程师和开发者来说至关重要。本文将深入探讨TCP和UDP的核心区别,并分析它们在实际应用中的选择依据。
115 3
|
4月前
|
运维 监控 网络协议
|
4月前
|
Web App开发 缓存 网络协议
不为人知的网络编程(十八):UDP比TCP高效?还真不一定!
熟悉网络编程的(尤其搞实时音视频聊天技术的)同学们都有个约定俗成的主观论调,一提起UDP和TCP,马上想到的是UDP没有TCP可靠,但UDP肯定比TCP高效。说到UDP比TCP高效,理由是什么呢?事实真是这样吗?跟着本文咱们一探究竟!
130 10
|
4月前
|
Ubuntu Linux 虚拟化
Linux虚拟机网络配置
【10月更文挑战第25天】在 Linux 虚拟机中,网络配置是实现虚拟机与外部网络通信的关键步骤。本文介绍了四种常见的网络配置方式:桥接模式、NAT 模式、仅主机模式和自定义网络模式,每种模式都详细说明了其原理和配置步骤。通过这些配置,用户可以根据实际需求选择合适的网络模式,确保虚拟机能够顺利地进行网络通信。
203 1

热门文章

最新文章