简单理解目标检测的IOU究竟是什么

简介: 简单理解目标检测的IOU究竟是什么

目标检测中有一个很重要的概念便是IOU


那么什么是IOU?


IOU是一种评价目标检测器的指标。


下图是一个示例:图中绿色框为实际框,红色框为预测框,当我们需要判断两个框之间的关系时,需要用什么指标呢?

此时便需要用到IOU。


1dc618a0ed9580ce8bfa6facb208c08f.png


计算IOU的公式为:


5d4c6812c8535adbb050f4ddf2e1bce8.png


可以看到IOU是一个比值,即交并比。


在分子部分,值为预测框和实际框之间的重叠区域;


46a9d80a6e05e4e3b19d57a0ee70bcdf.png



在分母部分,值为预测框和实际框所占有的总区域。


66ba272a0bfc97be54a5fa679e3d5482.png


交区域和并区域的比值,就是IOU。


那么我们为什么要用IOU?


目标检测任务的结果是框的锁定,


因此当我们输入图片时,模型应该给出一个推测,也就是它认为在照片中哪些地方有物体,以及物体的范围。由此,模型推测的结果和目标之间就会出现一个误差,而评价这个误差程度的方法就是IoU。


Iou是一种评价指标,让我们能够比较不同的目标检测任务或者模型的优劣。


问题:给出两个矩形框,请计算出它们两个的IOU。


实现代码:


import cv2
import numpy as np
def CountIOU(RecA, RecB):
    xA = max(RecA[0], RecB[0])
    yA = max(RecA[1], RecB[1])
    xB = min(RecA[2], RecB[2])
    yB = min(RecA[3], RecB[3])
    # 计算交集部分面积
    interArea = max(0, xB - xA + 1) * max(0, yB - yA + 1)
    # 计算预测值和真实值的面积
    RecA_Area = (RecA[2] - RecA[0] + 1) * (RecA[3] - RecA[1] + 1)
    RecB_Area = (RecB[2] - RecB[0] + 1) * (RecB[3] - RecB[1] + 1)
    # 计算IOU
    iou = interArea / float(RecA_Area + RecB_Area - interArea)
    return iou
img = np.zeros((512,512,3), np.uint8)   
img.fill(255)
RecA = [50,50,300,300]
RecB = [60,60,320,320]
cv2.rectangle(img, (RecA[0],RecA[1]), (RecA[2],RecA[3]), (0, 255, 0), 5)
cv2.rectangle(img, (RecB[0],RecB[1]), (RecB[2],RecB[3]), (255, 0, 0), 5)
IOU = CountIOU(RecA,RecB)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(img,"IOU = %.2f"%IOU,(130, 190),font,0.8,(0,0,0),2)
cv2.imshow("image",img)
cv2.waitKey()
cv2.destroyAllWindows()


相关文章
|
7月前
|
机器学习/深度学习 计算机视觉
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
YOLOv5改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
1569 0
|
4月前
|
机器学习/深度学习 算法 C语言
5.2.1 Backbone(特征提取) 5.2.2 Neck(多尺度检测)
这篇文章介绍了YOLOv3目标检测模型中的Backbone(特征提取)部分,详细阐述了使用Darknet53作为骨干网络来提取图像特征的方法,并通过代码示例展示了如何实现Darknet53网络结构以及如何查看不同层级输出特征图的形状,同时还讨论了Neck(多尺度检测)的概念,解释了如何通过特征图的尺寸放大和融合来实现对不同尺寸目标的检测。
|
6月前
|
机器学习/深度学习 算法 计算机视觉
YOLOv5改进 | 损失函数 | EIoU、SIoU、WIoU、DIoU、FocusIoU等多种损失函数
💡💡💡本专栏所有程序均经过测试,可成功执行💡💡💡
|
7月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
YOLOv8改进 | EIoU、SIoU、WIoU、DIoU、FocusIoU等二十余种损失函数
518 1
|
机器学习/深度学习 算法 固态存储
FCOS:一阶全卷积目标检测(上)
本文介绍一下近期比较热门的一个目标检测算法FCOS(FCOS: Fully Convolutional One-Stage Object Detection),该算法是一种基于FCN的逐像素目标检测算法,实现了无锚点(anchor-free)、无提议(proposal free)的解决方案,并且提出了中心度(Center—ness)的思想,同时在召回率等方面表现接近甚至超过目前很多先进主流的基于锚框目标检测算法。此外,本算法目前已开源。
FCOS:一阶全卷积目标检测(上)
|
机器学习/深度学习 算法 计算机视觉
YOLO涨点Trick | 超越CIOU/SIOU,Wise-IOU让Yolov7再涨1.5个点!
YOLO涨点Trick | 超越CIOU/SIOU,Wise-IOU让Yolov7再涨1.5个点!
4757 1
YOLO涨点Trick | 超越CIOU/SIOU,Wise-IOU让Yolov7再涨1.5个点!
|
机器学习/深度学习 编解码 固态存储
目标检测Neck(1)——多尺度问题(FPN)
目标检测Neck(1)——多尺度问题(FPN)
496 0
|
计算机视觉
【目标检测出】评价指标
【目标检测出】评价指标
145 0
|
机器学习/深度学习 算法 计算机视觉
YOLO涨点Trick | 超越CIOU/SIOU,Wise-IOU让Yolov7再涨1.5个点!(一)
YOLO涨点Trick | 超越CIOU/SIOU,Wise-IOU让Yolov7再涨1.5个点!(一)
906 0
|
机器学习/深度学习 数据可视化 计算机视觉
详细解读 | 如何让你的DETR目标检测模型快速收敛(一)
详细解读 | 如何让你的DETR目标检测模型快速收敛(一)
521 0