cs224w(图机器学习)2021冬季课程学习笔记13 Colab 3

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 本colab主要实现:实现GraphSAGE和GAT模型,应用在Cora数据集上。使用DeepSNAP包切分图数据集、实现数据集转换,完成边属性预测(链接预测)任务。

1. 实现GraphSAGE和GAT


在colab 21 中,我们是直接使用PyG内置的GCNConv来建模。在本colab中,我们将自己设计message-passing模型,建立单层GNN,并实现一个可泛化的堆叠GNN模型,应用在CORA数据集上。

CORA数据集是一张引用网络,节点是文档,无向边是引用关系。每个节点有所隶属类标签。节点特征是文档 词包BoW 表示的元素。数据集中共2708个节点,5429条边(注意PyG中无向边的edge_index的第二维是2倍边数),7类标签,每个节点有1433维特征。

在本colab中,CORA数据集通过PyG的Planetoid加载。

对PyG数据集的介绍可参考我之前写的博文:PyTorch Geometric (PyG) 入门教程

针对Planetoid有时可能无法直接下载数据的问题,可参考我写的博文:Planetoid无法直接下载Cora等数据集的3个解决方式


呃……顺带再提一嘴,这里的实现逻辑都是transductive的,至于怎么搞inductive的我还不知道。

我已经很累了,我的脑子不支持这么复杂的东西。


1.1 可泛化的GNN堆叠模型

GNN模型,可以直接应用自己写的GraphSAGE、GAT等单层模型。

由 message-passing + post-message-passing(即 Lecture 72 中讲的post-process layers)2部分组成。

注意,在代码中 x = F.dropout(x, p=self.dropout,training=self.training) 这一句,在原代码中是没有加 self.training 的。我用我的代码常识认为是老师写错了3。而且我发现增加 self.training 后结果确实有了提升4,所以我觉得确实大概是老师写错了。


import torch
import torch_scatter
import torch.nn as nn
import torch.nn.functional as F
import torch_geometric.nn as pyg_nn
import torch_geometric.utils as pyg_utils
from torch import Tensor
from typing import Union, Tuple, Optional
from torch_geometric.typing import (OptPairTensor, Adj, Size, NoneType,
                                    OptTensor)
from torch.nn import Parameter, Linear
from torch_sparse import SparseTensor, set_diag
from torch_geometric.nn.conv import MessagePassing
from torch_geometric.utils import remove_self_loops, add_self_loops, softmax
class GNNStack(torch.nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim, args, emb=False):
      #emb参数如果置False,将返回分类结果(经softmax后的结果);反之直接输出最后一层的表示向量
      #跟 colab 2 的return_embeds参数差不多
        super(GNNStack, self).__init__()
  #message-passing部分
        conv_model = self.build_conv_model(args.model_type)  #单层GNN(GraphSAGE或GAT)
        self.convs = nn.ModuleList()
        self.convs.append(conv_model(input_dim, hidden_dim))
        assert (args.num_layers >= 1), 'Number of layers is not >=1'
        #如果args.num_layers不河狸(<1)时报错
        for l in range(args.num_layers-1):
            self.convs.append(conv_model(args.heads * hidden_dim, hidden_dim))  
            #args.heads在GAT模型中是设置attention头数的参数
        #post-message-passing部分
        self.post_mp = nn.Sequential(
            nn.Linear(args.heads * hidden_dim, hidden_dim),  #GAT输出的特征维度就是args.heads*hidden_dim
            nn.Dropout(args.dropout),   #args.dropout参数是dropout的概率
            nn.Linear(hidden_dim, output_dim))
        self.dropout = args.dropout
        self.num_layers = args.num_layers
        self.emb = emb
    def build_conv_model(self, model_type):
        if model_type == 'GraphSage':
            return GraphSage
        elif model_type == 'GAT':
            return GAT
    def forward(self, data):
        x, edge_index, batch = data.x, data.edge_index, data.batch
        for i in range(self.num_layers):
          #单层卷积网络
            x = self.convs[i](x, edge_index)
            x = F.relu(x)
            #x = F.dropout(x, p=self.dropout) 这个是原代码
            x = F.dropout(x, p=self.dropout,training=self.training)
  #post-message-passing
        x = self.post_mp(x)
        if self.emb == True:
            return x
        return F.log_softmax(x, dim=1)
        #总之是softmax→取对数,具体细节还没看
    def loss(self, pred, label):
        return F.nll_loss(pred, label)
        #总之是适用于训练分类问题的损失函数,具体细节还没看


1.2 单层GNN在PyG中的实现

PyG官方文档:Creating Message Passing Networks — pytorch_geometric 1.7.2 documentation


(虽然官方文档中讲了边和EdgeConv的事,但是课程中没讲,所以我在这里也只提一下,我就不去研究了)


图卷积神经网络可泛化为信息传递或邻居聚合模型,即如下公式:

image.png


1.2.1 MessagePassing 基类

MessagePassing官方文档


就用这个的话,就可以自动做聚合(即公式中的 □ \square□ )工作,用户只需要考虑 ϕ \phiϕ(如使用 message() 方法)和 γ \gammaγ(如使用 update() 方法)。

聚合scheme可选:aggr="add", aggr="mean" or aggr="max"

(但是在本colab中的选择是手动写了 aggregate() 函数。呃……其实我猜噢,大概是因为以前版本的MessagePassing没有这个功能。我觉得应该用处一样,以后有时间或许可以试验一下)


大致运行逻辑是:


  • 在 forward() 函数中运行主要功能(跟普通Module一样),并调用 propagate() 函数。

普适范式:pre-processing → propagate → post-processing


  • propagate() 函数内置自动调用 message()、aggregate() 和 update() 函数。就有什么要用的参数(如 x)直接传到 propagate() 函数中即可。


1.2.1.2 定义类

MessagePassing(aggr="add", flow="source_to_target", node_dim=-2)

aggr参数:选择聚合scheme。

flow参数:message passing的flow direction,“source_to_target” or “target_to_source”。区别见下述 message 方法。

node_dim参数:聚合维度。这个默认的-2就是节点数量的那个维度(x的尺寸是 [|V|,d] 嘛),就是对邻居节点进行聚合的这个维度嘛。


1.2.1.3 propagate() 方法

MessagePassing.propagate(edge_index, size=None, **kwargs)

传播信息。

不止允许对称邻接矩阵6(尺寸为 [N, N] )的情况(size为None时的默认情况),也接受 general sparse assignment matrices(如 bipartite graph)的情况,如尺寸为 [N, M],需要传入参数 size=(N, M)。

对于有两组节点和索引、且分别拥有自己信息的bipartite graph,这种切分可通过传入tuple格式信息来进行标记:x=(x_N, x_M)(对这一点的理解可见GraphSAGE部分的代码注释)


1.2.1.4 message() 方法

MessagePassing.message(...)

信息转换,类似于公式中的 ϕ \phiϕ。

具体来说,是用于构建传播至节点 i ii 的信息,如果 flow="source_to_target" 就指考虑所有 ( j , i ) ∈ ϵ (j,i)\in\epsilon(j,i)∈ϵ 的边(就是,一般来说都是这样的嘛),如果 flow="target_to_source" 就考虑所有 ( i , j ) ∈ ϵ (i,j)\in\epsilon(i,j)∈ϵ 的边。

能使用所有传入 propagate() 的参数。

此外,对传入 propagate() 的Tensor(如 x),可以通过在变量名后分别加 _i 和 _j 来将其映射到不同的节点组上(如 x_i 和 x_j)。一般 i ii 指聚合信息的中心节点,j jj 指邻居节点,如公式所用。(每个Tensor都能这么分,只要有source或destination的节点特征)


1.2.1.5 update() 方法

MessagePassing.update(aggr_out, ...)

对所有节点更新节点嵌入,类似于公式中的 γ \gammaγ。

以聚合过程的输出作为第一个入参,也能使用所有传入 propagate() 的参数。


1.2.2 官方文档示例:Implementing the GCN Layer

image.png

前三步一般在message passing前进行(也就是在forward中直接调用),4-5步可在MessagePassing基类中处理。


创建 message passing 层的代码:

import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree
class GCNConv(MessagePassing):
    def __init__(self, in_channels, out_channels):
        super(GCNConv, self).__init__(aggr='add')  # "Add" aggregation (Step 5).
        self.lin = torch.nn.Linear(in_channels, out_channels)
    def forward(self, x, edge_index):
        # x has shape [N, in_channels]
        # edge_index has shape [2, E]
        # Step 1: Add self-loops to the adjacency matrix.
        edge_index, _ = add_self_loops(edge_index, num_nodes=x.size(0))
        # Step 2: Linearly transform node feature matrix.
        x = self.lin(x)
        # Step 3: Compute normalization.
        row, col = edge_index  #这个row和col是COO格式储存邻接矩阵的edge_index的坐标
        #也就是每个边的起点和终点
        deg = degree(col, x.size(0), dtype=x.dtype)  #得到各节点的度数
        deg_inv_sqrt = deg.pow(-0.5)
        deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0  #这句话有点没搞懂,会出现这种情况吗?
        norm = deg_inv_sqrt[row] * deg_inv_sqrt[col]  #尺寸为[num_edges, ]
        # Step 4-5: Start propagating messages.
        return self.propagate(edge_index, x=x, norm=norm)
    def message(self, x_j, norm):
        # x_j has shape [E, out_channels]
        #x_j包含了每个边的source node的特征(节点邻居特征)
        # Step 4: Normalize node features.
        return norm.view(-1, 1) * x_j
        #https://pytorch.org/docs/stable/generated/torch.mul.html
        #把norm拉成[E,1]尺寸,这两个矩阵就broadcastable了,就可以进行乘法运算了
        #对每个边,norm与x_j逐元素相乘。结果的尺寸是[E,out_channels]


在文档中说 message() 里的 x_j 是一个lifted tensor……这又是什么玩意啊?


直接调用 message passing 网络层的代码:

conv = GCNConv(16, 32)
x = conv(x, edge_index)


1.2.3 在本colab中的应用

不显示调用 update(),而在 forward() 中实现其功能。


1.2.3.1 GraphSAGE

PyG对GraphSAGE的官方实现内置函数SAGEConv文档


在本colab中,对GraphSAGE增加了skip connections2。


GraphSAGE公式:

image.png

简化的AGG函数:

image.png

在每次迭代后增加了L2正则化。


代码:

class GraphSage(MessagePassing):
    def __init__(self, in_channels, out_channels, normalize = True,
                 bias = False, **kwargs):
        #bias这个参数没用的样子
        super(GraphSage, self).__init__(**kwargs)
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.normalize = normalize
        self.lin_l=Linear(in_channels,out_channels)  #W_l,对中心节点应用
        self.lin_r=Linear(in_channels,out_channels)  #W_r,对邻居节点应用
        self.reset_parameters()
    def reset_parameters(self):
        self.lin_l.reset_parameters()
        self.lin_r.reset_parameters()
    def forward(self, x, edge_index, size = None):
        # message-passing + post-processing
        out=self.propagate(edge_index,x=(x,x),size=size)  #message passing
        #(x,x)见后文讲解
        x=self.lin_l(x)  #自环
        out=self.lin_r(out)  #邻居信息
        out=out+x
        if self.normalize:  #L2
            out=F.normalize(out)
  return out
    def message(self, x_j):
  out=x_j
  return out
    def aggregate(self, inputs, index, dim_size = None):
        # The axis along which to index number of nodes.
        node_dim = self.node_dim
  out=torch_scatter.scatter(inputs,index,node_dim,dim_size=dim_size,reduce='mean')
  #这个函数我也还没看懂,以后再研究吧
  return out


本colab中类的 reset_parameters() 方法好像跟colab 2里的一样都没什么用的样子。


关于 out=self.propagate(edge_index,x=(x,x),size=size) 中的入参 x:

这个在原代码中要求传入(x,x),但是我只传了x试了一下(参考GCN那个示例),也能跑,而且对应结果的最大accuracy跑了两次分别是0.8和0.782,参考4的结果,总之就跟(x,x)的结果差不多。

我对此的理解就是:两种写法都可以。colab中说是因为对中心节点和邻居节点的表示是相同的,但我没搞懂这是指啥。

但是确实在PyG自己对GraphSAGE的实现(SAGEConv)代码中也是用的(x,x):

image.png

图片截自:torch_geometric.nn.conv.sage_conv — pytorch_geometric 1.7.2 documentation


就我思索了一下,这种级别的问题非看源码或问作者不可解决了,但我没看懂MessagePassing的源代码,所以算了。我就说明一下这个情况:直接用x的典例当属在本笔记中也写过的GCN的代码,用(x,x)的典例就是这块了。


顺带一提,那个 message() 的源代码里本来就是返回 x_j 的:

image.png

图片来源:torch_geometric.nn.conv.message_passing — pytorch_geometric 1.7.2 documentation


所以我觉得其实应该不用专门再重写一遍 message()?但是还是跟上面的(x,x)一样,就是SAGEConv的官方实现里面确实也是这么写的就是了……


1.2.3.2 GAT

PyG对GAT的官方实现内置函数GATConv文档


单层GAT实现逻辑:

image.png

image.png


以下代码有部分内容经评论区读者提醒修正。但是GitHub项目里的colab没有改,因为我懒


代码:

class GAT(MessagePassing):
    def __init__(self, in_channels, out_channels, heads = 2,
                 negative_slope = 0.2, dropout = 0., **kwargs):
        super(GAT, self).__init__(node_dim=0, **kwargs)
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.heads = heads
        self.negative_slope = negative_slope
        self.dropout = dropout
        self.lin_l=Linear(in_channels,heads*out_channels)  #W_l
        #根据GNNStack(),这里的in_channels除第一层外就都是已经乘过heads的数字
        self.lin_r = self.lin_l  #W_r
        self.att_l = Parameter(torch.Tensor(1, heads, out_channels))  #\overrightarrow{a_l}
        self.att_r = Parameter(torch.Tensor(1, heads, out_channels))  #\overrightarrow{a_r}
        #我抄的代码就是用的Parameter,我看了一下PyG的GATConv源码也用的是Parameter
        #至于为什么不用Linear可能是因为Linear不方便这么处理三维张量?
        self.reset_parameters()
    def reset_parameters(self):
        nn.init.xavier_uniform_(self.lin_l.weight)
        nn.init.xavier_uniform_(self.lin_r.weight)
        nn.init.xavier_uniform_(self.att_l)
        nn.init.xavier_uniform_(self.att_r)
    def forward(self, x, edge_index, size = None):
        H, C = self.heads, self.out_channels
        #线性转换
        x_l=self.lin_l(x)  #W_l*h_i [N,H*C]
        #x就是h的转置        
        x_r=self.lin_r(x)  #W_r*h_j
        x_l=x_l.view(-1,H,C)  #[N,H,C]
        x_r=x_r.view(-1,H,C)
        alpha_l = (x_l * self.att_l).sum(axis=-1)
        #\overrightarrow{a_r}^T * Wl * hi
        #沿C汇总。这部分是经评论区读者发现,然后我看了一下PyG自己的GATConv是这么实现的
        #我想了一下确实应该是沿特征汇总才对,因为矩阵运算就是加起来嘛……
        #代码中点乘部分就是矩阵乘法中逐元素相乘的过程,沿特征求和就是矩阵乘法中对这些相乘元素求和的过程
        #不过这个虽然我或许是搞懂了,但要我自己整出这个玄学Parameter那是不太可能……我搞不出来的
        alpha_r = (x_r * self.att_r).sum(axis=-1)
        out = self.propagate(edge_index, x=(x_l, x_r), alpha=(alpha_l, alpha_r),size=size)  #[N,H,C]
        out = out.view(-1, H * C)  #[N,d=H*C]
        return out
    def message(self, x_j, alpha_j, alpha_i, index, ptr, size_i):
      #alpha:[E,H]
      #x:[N,H,C]
      #那个ptr和index反正是那个我看不懂的softmax里面的参数
  #步骤:
        #在message而非aggregate函数中应用attention
        #attention coefficient=LeakyReLU(alpha_i+alpha_j)
        #attention weight=softmax(attention coefficient)(就这两步都是alpha,就在代码里没区分e和alpha)
        #embeddings * attention weights
        alpha = alpha_i + alpha_j
        alpha = F.leaky_relu(alpha,self.negative_slope)
        alpha = softmax(alpha, index, ptr, size_i)
        #这个softmax是PyG而非torch的内置函数
        #但是反正参数是这些参数
        #可参考:
        #https://pytorch-geometric.readthedocs.io/en/latest/modules/utils.html#torch-geometric-utils
        #https://github.com/rusty1s/pytorch_geometric/blob/master/torch_geometric/utils/softmax.py
        alpha = F.dropout(alpha, p=self.dropout, training=self.training).unsqueeze(-1)  #[E,H,1]
        out = x_j * alpha  #[E,H,C]
  return out
    def aggregate(self, inputs, index, dim_size = None):
        out = torch_scatter.scatter(inputs, index, dim=self.node_dim, dim_size=dim_size, reduce='sum')
        return out


1.3 建立优化器

(本colab中用于评分的优化器是Adam optimizer)

import torch.optim as optim
def build_optimizer(args, params):
    weight_decay = args.weight_decay
    filter_fn = filter(lambda p : p.requires_grad, params)
    #过滤掉不需要梯度的参数,只将需要计算梯度的参数传入各优化器
    if args.opt == 'adam':
        optimizer = optim.Adam(filter_fn, lr=args.lr, weight_decay=weight_decay)
    elif args.opt == 'sgd':
        optimizer = optim.SGD(filter_fn, lr=args.lr, momentum=0.95, weight_decay=weight_decay)
    elif args.opt == 'rmsprop':
        optimizer = optim.RMSprop(filter_fn, lr=args.lr, weight_decay=weight_decay)
    elif args.opt == 'adagrad':
        optimizer = optim.Adagrad(filter_fn, lr=args.lr, weight_decay=weight_decay)
    if args.opt_scheduler == 'none':
        return None, optimizer
    elif args.opt_scheduler == 'step':
        scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.opt_decay_step, gamma=args.opt_decay_rate)
    elif args.opt_scheduler == 'cos':
        scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=args.opt_restart)
    return scheduler, optimizer


1.4 构建 train() 和 test() 函数

import time
import networkx as nx
import numpy as np
import torch
import torch.optim as optim
from torch_geometric.datasets import TUDataset
from torch_geometric.datasets import Planetoid
from torch_geometric.data import DataLoader
import torch_geometric.nn as pyg_nn
import matplotlib.pyplot as plt
def train(dataset, args):
    print("Node task. test set size:", np.sum(dataset[0]['train_mask'].numpy()))
    #我也不知道为啥它说test set size,但是数训练集的数目,就挺奇怪的,搞不懂
    test_loader = loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
    # build model
    model = GNNStack(dataset.num_node_features, args.hidden_dim, dataset.num_classes, 
                            args)
    scheduler, opt = build_optimizer(args, model.parameters())
    # train
    losses = []
    test_accs = []
    for epoch in range(args.epochs):
        total_loss = 0
        model.train()
        for batch in loader:
            opt.zero_grad()
            pred = model(batch)
            label = batch.y
            pred = pred[batch.train_mask]
            label = label[batch.train_mask]
            loss = model.loss(pred, label)
            loss.backward()
            opt.step()
            total_loss += loss.item() * batch.num_graphs
            #这个batch.num_graphs整啥啊,CORA数据集不是就这一张图吗……
        total_loss /= len(loader.dataset)
        losses.append(total_loss)
        if epoch % 10 == 0:
          test_acc = test(test_loader, model)
          test_accs.append(test_acc)
        else:
          test_accs.append(test_accs[-1])
    return test_accs, losses
def test(loader, model, is_validation=True):
    model.eval()
    correct = 0
    for data in loader:
        with torch.no_grad():
            pred = model(data).max(dim=1)[1]
            label = data.y
        mask = data.val_mask if is_validation else data.test_mask
        # node classification: only evaluate on nodes in test set
        pred = pred[mask]
        label = data.y[mask]
        correct += pred.eq(label).sum().item()
    total = 0
    for data in loader.dataset:
        total += torch.sum(data.val_mask if is_validation else data.test_mask).item()
    return correct / total
class objectview(object):
    def __init__(self, d):
        self.__dict__ = d  #在下一节解释


1.5 训练

呃就是我也不知道怎么会用这种形式来写的,就我也不知道这么写跟直接跑有什么区别。

def main():
    for args in [
        {'model_type': 'GraphSage', 'dataset': 'cora', 'num_layers': 2, 'heads': 1, 'batch_size': 32, 'hidden_dim': 32, 'dropout': 0.5, 'epochs': 500, 'opt': 'adam', 'opt_scheduler': 'none', 'opt_restart': 0, 'weight_decay': 5e-3, 'lr': 0.01},
    ]:
        args = objectview(args)  #见代码下面解释
        for model in ['GraphSage', 'GAT']:
            args.model_type = model
            # Match the dimension.
            if model == 'GAT':
              args.heads = 2
            else:
              args.heads = 1
            if args.dataset == 'cora':
                dataset = Planetoid(root='/tmp/cora', name='Cora')
            else:
                raise NotImplementedError("Unknown dataset") 
            test_accs, losses = train(dataset, args) 
            print("Maximum accuracy: {0}".format(max(test_accs)))
            print("Minimum loss: {0}".format(min(losses)))
            plt.title(dataset.name)
            plt.plot(losses, label="training loss" + " - " + args.model_type)
            plt.plot(test_accs, label="test accuracy" + " - " + args.model_type)
        plt.legend()
        plt.show()
if __name__ == '__main__':
    main()


就是专门提一下这个objectview函数,就是将args的__dict__属性置为args(就是那个超参字典)。

就是,我试了一下,字典的话就只能靠key来获取value,如 args['model_type'],但是如果用了objectview函数,就可以直接将超参视同args的属性,如可以通过 args.model_type 来获取值。

……

……

……所以我也不知道为什么要专门跑这一步,完全没看出来意义在哪里呢。


输出:

注意这个结果是我修改之前的结果。之所以改了之后就不跑了是因为我报了一个比较邪门的bug导致没法用GPU来跑,就是我也不知道具体是为什么,好像是因为cuda版本不对,但是我觉得我cuda版本是对的。就很邪门一个bug,我不想弄它了。就因为这个很邪门的bug所以我只能用CPU跑,太久了算了。有缘分的话再来研究重跑一遍的事。

image.png

可以看出来,在这个任务上是GAT的表现要好一些的。


2. DeepSNAP


DeepSNAP GitHub项目

DeepSNAP 文档


2.1 导包

import torch
import networkx as nx
import matplotlib.pyplot as plt
from deepsnap.graph import Graph
from deepsnap.batch import Batch
from deepsnap.dataset import GraphDataset
from torch_geometric.datasets import Planetoid, TUDataset
from torch.utils.data import DataLoader


2.2 可视化函数

用于可视化NetworkX图格式数据的函数。

def visualize(G, color_map=None, seed=123):
  if color_map is None:
    color_map = '#c92506'
  plt.figure(figsize=(8, 8))
  nodes = nx.draw_networkx_nodes(G, pos=nx.spring_layout(G, seed=seed), \
                                 label=None, node_color=color_map, node_shape='o', node_size=150)
  edges = nx.draw_networkx_edges(G, pos=nx.spring_layout(G, seed=seed), alpha=0.5)
  if color_map is not None:
    plt.scatter([],[], c='#c92506', label='Nodes with label 0', edgecolors="black", s=140)
    plt.scatter([],[], c='#fcec00', label='Nodes with label 1', edgecolors="black", s=140)
    plt.legend(prop={'size': 13}, handletextpad=0)
  nodes.set_edgecolor('black')
  plt.show()


2.3 DeepSNAP的图数据格式

deepsnap.graph.Graph 是DeepSNAP的核心类。

在本colab中将使用NetworkX作为其后台图操作包。


2.3.1 NetworkX图转化示例

创造一个随机的NetworkX图,并将其转换为DeepSNAP图:

num_nodes = 100
p = 0.05
seed = 100
#创建一个随机的NetworkX图G
G = nx.gnp_random_graph(num_nodes, p, seed=seed)
#生成随机的节点特征和节点标签
node_feature = {node : torch.rand([5, ]) for node in G.nodes()}
node_label = {node : torch.randint(0, 2, ()) for node in G.nodes()}
#将节点特征和节点标签赋到G上
nx.set_node_attributes(G, node_feature, name='node_feature')
nx.set_node_attributes(G, node_label, name='node_label')
#打印一个节点作为示例
for node in G.nodes(data=True):
  print(node)
  break


(0, {‘node_feature’: tensor([0.6622, 0.7196, 0.9278, 0.5127, 0.1430]), ‘node_label’: tensor(0)})


可视化G

color_map = ['#c92506' if node[1]['node_label'].item() == 0 else '#fcec00' for node in G.nodes(data=True)]
visualize(G, color_map=color_map)

image.png


将NetworkX图G转换为DeepSNAP图graph

graph = Graph(G)
print(graph)


Graph(G=[], edge_index=[2, 524], edge_label_index=[2, 524], node_feature=[100, 5], node_label=[100], node_label_index=[100])


DeepSNAP会将节点属性转化为Tensor

print("Node feature (node_feature) has shape {} and type {}".format(graph.node_feature.shape, graph.node_feature.dtype))


Node feature (node_feature) has shape torch.Size([100, 5]) and type torch.float32

print("Node label (node_label) has shape {} and type {}".format(graph.node_label.shape, graph.node_label.dtype))


Node label (node_label) has shape torch.Size([100]) and type torch.int64


DeepSNAP还会创造edge_index这一Tensor

(当然按照惯例这个无向图的edge_index的第二维度长度会是边数的两倍,不赘了)

print("Edge index (edge_index) has shape {} and type {}".format(graph.edge_index.shape, graph.edge_index.dtype))


Edge index (edge_index) has shape torch.Size([2, 524]) and type torch.int64



DeepSNAP还能追溯到后台的NetworkX图

print("The DeepSNAP graph has {} as the internal manupulation graph".format(type(graph.G)))


The DeepSNAP graph has <class ‘networkx.classes.graph.Graph’> as the internal manupulation graph


2.4 将PyG数据集转化为一系列DeepSNAP图

root = '/tmp/cora'
name = 'Cora'
# The Cora dataset
pyg_dataset= Planetoid(root, name)
# PyG dataset to a list of deepsnap graphs
graphs = GraphDataset.pyg_to_graphs(pyg_dataset)
# Get the first deepsnap graph (CORA only has one graph)
graph = graphs[0]
print(graph)


Graph(G=[], edge_index=[2, 10556], edge_label_index=[2, 10556], node_feature=[2708, 1433], node_label=[2708], node_label_index=[2708])


2.5 DeepSNAP属性

DeepSNAP具有节点、边、图三种级别的属性。

node_feature node_label

edge_feature edge_label

graph_feature graph_label



通过类属性可获得图基本信息:

  1. 节点数:graph.num_nodes
  2. 边数:graph.num_edges
  3. 标签类数:graph.num_node_labels
  4. 特征维度:graph.num_node_features


2.6 DeepSNAP的Dataset

deepsnap.dataset.GraphDataset

官方文档


除了一系列图,还包含这个数据集用于什么任务(task=node / link_pred / graph),以及一些在初始化或其他操作时的实用参数。


示例:以COX2数据集(图级别任务)为例

root = './tmp/cox2'
name = 'COX2'
# Load the dataset through PyG
pyg_dataset = TUDataset(root, name)
# Convert to a list of deepsnap graphs
graphs = GraphDataset.pyg_to_graphs(pyg_dataset)
# Convert list of deepsnap graphs to deepsnap dataset with specified task=graph
dataset = GraphDataset(graphs, task='graph')
print(dataset)


GraphDataset(467)



以打印第一张图为例:

graph_0 = dataset[0]
print(graph_0)


Graph(G=[], edge_index=[2, 82], edge_label_index=[2, 82], graph_label=[1], node_feature=[39, 35], node_label_index=[39], task=[])


2.7 DeepSNAP进阶

2.7.1 导包

import torch
import networkx as nx
import matplotlib.pyplot as plt
from deepsnap.graph import Graph
from deepsnap.batch import Batch
from deepsnap.dataset import GraphDataset
from torch_geometric.datasets import Planetoid, TUDataset
from torch.utils.data import DataLoader


2.7.2 用DeepSNAP进行transductive / inductive的数据集切分

2.7.2.1 Inductive Split

将不同的图切分为训练集 / 验证集 / 测试集。


图分类任务切分数据集示例:

root = './tmp/cox2'
name = 'COX2'
pyg_dataset = TUDataset(root, name)
graphs = GraphDataset.pyg_to_graphs(pyg_dataset)
# Here we specify the task as graph-level task such as graph classification
task = 'graph'
dataset = GraphDataset(graphs, task=task)
# Specify transductive=False (inductive)
dataset_train, dataset_val, dataset_test = dataset.split(transductive=False, split_ratio=[0.8, 0.1, 0.1])
print("COX2 train dataset: {}".format(dataset_train))
print("COX2 validation dataset: {}".format(dataset_val))
print("COX2 test dataset: {}".format(dataset_test))


COX2 train dataset: GraphDataset(373)

COX2 validation dataset: GraphDataset(46)

COX2 test dataset: GraphDataset(48)


2.7.2.2 Transductive Split

在同一张图上进行切分。

默认随机切分数据集,可以通过从PyG加载数据集时直接置 fixed_split=True 或直接修改 node_label_index(应该指的是3种split的 node_label_index 属性)来获取固定的切分。(但是我还没试)


节点分类任务数据集切分示例:

root = '/tmp/cora'
name = 'Cora'
pyg_dataset = Planetoid(root, name)
graphs = GraphDataset.pyg_to_graphs(pyg_dataset)
# Here we specify the task as node-level task such as node classification
task = 'node'
dataset = GraphDataset(graphs, task=task)
# Specify we want the transductive splitting
dataset_train, dataset_val, dataset_test = dataset.split(transductive=True, split_ratio=[0.8, 0.1, 0.1])
print("Cora train dataset: {}".format(dataset_train))
print("Cora validation dataset: {}".format(dataset_val))
print("Cora test dataset: {}".format(dataset_test))
print("Original Cora has {} nodes".format(dataset.num_nodes[0]))
# The nodes in each set can be find in node_label_index
print("After the split, Cora has {} training nodes".format(dataset_train[0].node_label_index.shape[0]))
print("After the split, Cora has {} validation nodes".format(dataset_val[0].node_label_index.shape[0]))
print("After the split, Cora has {} test nodes".format(dataset_test[0].node_label_index.shape[0]))


Cora train dataset: GraphDataset(1)

Cora validation dataset: GraphDataset(1)

Cora test dataset: GraphDataset(1)

Original Cora has 2708 nodes

After the split, Cora has 2166 training nodes

After the split, Cora has 270 validation nodes

After the split, Cora has 272 test nodes


2.7.2.3 边级别的数据集切分

流程:

抽样负边 → 切分正边到训练集 / 验证集 / 测试集 → 将训练集切分为 message passing edges and supervision edges → 在训练阶段重抽样负边等9


2.7.2.3.1 All Mode

默认设置

root = '/tmp/cora'
name = 'Cora'
pyg_dataset = Planetoid(root, name)
graphs = GraphDataset.pyg_to_graphs(pyg_dataset)
# Specify task as link_pred for edge-level task
task = 'link_pred'
# Specify the train mode, "all" mode is default for deepsnap dataset
edge_train_mode = "all"
dataset = GraphDataset(graphs, task=task, edge_train_mode=edge_train_mode)
# Transductive link prediction split
dataset_train, dataset_val, dataset_test = dataset.split(transductive=True, split_ratio=[0.8, 0.1, 0.1])
print("Cora train dataset: {}".format(dataset_train))
print("Cora validation dataset: {}".format(dataset_val))
print("Cora test dataset: {}".format(dataset_test))


Cora train dataset: GraphDataset(1)

Cora validation dataset: GraphDataset(1)

Cora test dataset: GraphDataset(1)


message passing edge:edge_index

supervision edge:edge_label_index


print("Original Cora graph has {} edges".format(dataset[0].num_edges))
print("Because Cora graph is undirected, the original edge_index has shape {}".format(dataset[0].edge_index.shape))
print("The training set has message passing edge index shape {}".format(dataset_train[0].edge_index.shape))
print("The training set has supervision edge index shape {}".format(dataset_train[0].edge_label_index.shape))
print("The validation set has message passing edge index shape {}".format(dataset_val[0].edge_index.shape))
print("The validation set has supervision edge index shape {}".format(dataset_val[0].edge_label_index.shape))
print("The test set has message passing edge index shape {}".format(dataset_test[0].edge_index.shape))
print("The test set has supervision edge index shape {}".format(dataset_test[0].edge_label_index.shape))


Original Cora graph has 5278 edges

Because Cora graph is undirected, the original edge_index has shape torch.Size([2, 10556])

The training set has message passing edge index shape torch.Size([2, 8444])

The training set has supervision edge index shape torch.Size([2, 16888])

The validation set has message passing edge index shape torch.Size([2, 8444])

The validation set has supervision edge index shape torch.Size([2, 2108])

The test set has message passing edge index shape torch.Size([2, 9498])

The test set has supervision edge index shape torch.Size([2, 2116])


在all mode中,训练阶段和测试阶段的message passing edge是相同的。

在训练集中,正supervision edges (edge_label_index) 和 message passing edges 是相同的(应该意思是 edge_label_index 同时包含了正负一样多的supervision edges)。

在训练集中,message passing edges 是训练和验证阶段 message passing edges 的加总。

注意,edge_label 和 edge_label_index 这两个属性都是包含负边的。默认负边和正边一样多。


2.7.2.3.2 验证两数据集间是否disjoint

此处disjoint意为两个数据集之间没有相同的边。

不用考虑无向边情况,即认为 (a,b) 和 (b,a) 就是两组边。


函数edge_indices_disjoint,入参为两个数据集的edge_index


def edge_indices_disjoint(edge_index_1, edge_index_2):
  #试过用遍历,特别慢,所以用集合
  #代码逻辑是将一个数据集的tuple形式的边储存进集合中
  #然后将第二个数据集的边逐一验证是否在集合中
  edge_set=set()
  for i in range(edge_index_1.shape[1]):
    e=tuple(edge_index_1[:,i].numpy())
    edge_set.add(e)
  for j in range(edge_index_2.shape[1]):
    e=tuple(edge_index_2[:,j].numpy())
    if e in edge_set:
      return False
  disjoint=True
  return disjoint


num_train_edges = dataset_train[0].edge_label_index.shape[1] // 2
train_pos_edge_index = dataset_train[0].edge_label_index[:, :num_train_edges]
train_neg_edge_index = dataset_train[0].edge_label_index[:, num_train_edges:]
print("3.1 Training (supervision) positve and negative edges are disjoint = {}"\
        .format(edge_indices_disjoint(train_pos_edge_index, train_neg_edge_index)))
num_val_edges = dataset_val[0].edge_label_index.shape[1] // 2
val_pos_edge_index = dataset_val[0].edge_label_index[:, :num_val_edges]
val_neg_edge_index = dataset_val[0].edge_label_index[:, num_val_edges:]
print("3.2 Validation (supervision) positve and negative edges are disjoint = {}"\
        .format(edge_indices_disjoint(val_pos_edge_index, val_neg_edge_index)))
num_test_edges = dataset_test[0].edge_label_index.shape[1] // 2
test_pos_edge_index = dataset_test[0].edge_label_index[:, :num_test_edges]
test_neg_edge_index = dataset_test[0].edge_label_index[:, num_test_edges:]
print("3.3 Test (supervision) positve and negative edges are disjoint = {}"\
        .format(edge_indices_disjoint(test_pos_edge_index, test_neg_edge_index)))
print("3.4 Test (supervision) positve and validation (supervision) positve edges are disjoint = {}"\
        .format(edge_indices_disjoint(test_pos_edge_index, val_pos_edge_index)))
print("3.5 Validation (supervision) positve and training (supervision) positve edges are disjoint = {}"\
        .format(edge_indices_disjoint(val_pos_edge_index, train_pos_edge_index)))


3.1 Training (supervision) positve and negative edges are disjoint = True

3.2 Validation (supervision) positve and negative edges are disjoint = True

3.3 Test (supervision) positve and negative edges are disjoint = True

3.4 Test (supervision) positve and validation (supervision) positve edges are disjoint = True

3.5 Validation (supervision) positve and training (supervision) positve edges are disjoint = True


2.7.2.3.3 Disjoint Mode

edge_train_mode=“disjoint”

课程中讲的transuctive链接预测任务切分方式(算了,我也还没搞懂)。

edge_train_mode = "disjoint"
dataset = GraphDataset(graphs, task='link_pred', edge_train_mode=edge_train_mode)
orig_edge_index = dataset[0].edge_index
dataset_train, dataset_val, dataset_test = dataset.split(
    transductive=True, split_ratio=[0.8, 0.1, 0.1])
train_message_edge_index = dataset_train[0].edge_index
train_sup_edge_index = dataset_train[0].edge_label_index
val_sup_edge_index = dataset_val[0].edge_label_index
test_sup_edge_index = dataset_test[0].edge_label_index
print("The edge index of original graph has shape: {}".format(orig_edge_index.shape))
print("The edge index of training message edges has shape: {}".format(train_message_edge_index.shape))
print("The edge index of training supervision edges has shape: {}".format(train_sup_edge_index.shape))
print("The edge index of validation message edges has shape: {}".format(dataset_val[0].edge_index.shape))
print("The edge index of validation supervision edges has shape: {}".format(val_sup_edge_index.shape))
print("The edge index of test message edges has shape: {}".format(dataset_test[0].edge_index.shape))
print("The edge index of test supervision edges has shape: {}".format(test_sup_edge_index.shape))


The edge index of original graph has shape: torch.Size([2, 10556])

The edge index of training message edges has shape: torch.Size([2, 6754])

The edge index of training supervision edges has shape: torch.Size([2, 3380])

The edge index of validation message edges has shape: torch.Size([2, 8444])

The edge index of validation supervision edges has shape: torch.Size([2, 2108])

The edge index of test message edges has shape: torch.Size([2, 9498])

The edge index of test supervision edges has shape: torch.Size([2, 2116])


2.7.2.3.4 训练时每次迭代后重抽样负边

代码示例是2次迭代时输出的训练集和验证集的负边,可以从输出看到确实是不一样的,有重抽样过的。

dataset = GraphDataset(graphs, task='link_pred', edge_train_mode="disjoint")
datasets = {}
follow_batch = []
datasets['train'], datasets['val'], datasets['test'] = dataset.split(
    transductive=True, split_ratio=[0.8, 0.1, 0.1])
dataloaders = {
  split: DataLoader(
    ds, collate_fn=Batch.collate(follow_batch),
    batch_size=1, shuffle=(split=='train')
  )
  for split, ds in datasets.items()
}
neg_edges_1 = None
for batch in dataloaders['train']:
  num_edges = batch.edge_label_index.shape[1] // 2
  neg_edges_1 = batch.edge_label_index[:, num_edges:]
  print("First iteration training negative edges:")
  print(neg_edges_1)
  break
neg_edges_2 = None
for batch in dataloaders['train']:
  num_edges = batch.edge_label_index.shape[1] // 2
  neg_edges_2 = batch.edge_label_index[:, num_edges:]
  print("Second iteration training negative edges:")
  print(neg_edges_2)
  break
neg_edges_1 = None
for batch in dataloaders['val']:
  num_edges = batch.edge_label_index.shape[1] // 2
  neg_edges_1 = batch.edge_label_index[:, num_edges:]
  print("First iteration validation negative edges:")
  print(neg_edges_1)
  break
neg_edges_2 = None
for batch in dataloaders['val']:
  num_edges = batch.edge_label_index.shape[1] // 2
  neg_edges_2 = batch.edge_label_index[:, num_edges:]
  print("Second iteration validation negative edges:")
  print(neg_edges_2)
  break


First iteration training negative edges:

tensor([[ 253, 2478, 2559, …, 541, 1078, 815],

[ 88, 1827, 2098, …, 2234, 1832, 114]])

Second iteration training negative edges:

tensor([[2631, 2113, 2693, …, 1990, 2241, 821],

[2699, 2557, 1234, …, 810, 233, 461]])

First iteration validation negative edges:

tensor([[2568, 2657, 1968, …, 508, 2315, 763],

[2135, 818, 1366, …, 1795, 1421, 1999]])

Second iteration validation negative edges:

tensor([[2568, 2657, 1968, …, 508, 2315, 763],

[2135, 818, 1366, …, 1795, 1421, 1999]])


2.7.3 Graph Transformation and Feature Computation

在DeepSNAP中,graph transformation / feature computation 分成两类,一类是在训练前的转换(对整个数据集),一类是在训练过程中的转换(对图的一个batch)。


以下代码示例:用NetworkX后台计算PageRank值,在训练前将该特征赋予整个数据集。

def pagerank_transform_fn(graph):
  # Get the referenced networkx graph
  G = graph.G
  # Calculate the pagerank by using networkx
  pr = nx.pagerank(G)
  # Transform the pagerank values to tensor
  pr_feature = torch.tensor([pr[node] for node in range(graph.num_nodes)], dtype=torch.float32)
  pr_feature = pr_feature.view(graph.num_nodes, 1)
  # Concat the pagerank values to the node feature
  graph.node_feature = torch.cat([graph.node_feature, pr_feature], dim=-1)
root = './tmp/cox2'
name = 'COX2'
pyg_dataset = TUDataset(root, name)
graphs = GraphDataset.pyg_to_graphs(pyg_dataset)
dataset = GraphDataset(graphs, task='graph')
print("Number of features before transformation: {}".format(dataset.num_node_features))
dataset.apply_transform(pagerank_transform_fn, update_tensor=False)
print("Number of features after transformation: {}".format(dataset.num_node_features))


Number of features before transformation: 35

Number of features after transformation: 36


从输出可以发现图特征多了一维,即PageRank特征添加成功。


此外,DeepSNAP还支持后台图数据格式(如NetworkX图)和Tensor表示格式之间修改的同步,如可以仅手动更新NetworkX图,通过指定 update_tensor=True 使Tensor格式自动更新。


2.8 Edge Level Prediction

2.8.1 建立模型

使用DeepSNAP和PyG建立一个链接预测模型。

直接应用PyG内置的SAGEConv模型。

import copy
import torch
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
from deepsnap.graph import Graph
from deepsnap.batch import Batch
from deepsnap.dataset import GraphDataset
from torch_geometric.datasets import Planetoid, TUDataset
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torch_geometric.nn import SAGEConv
class LinkPredModel(torch.nn.Module):
    def __init__(self, input_dim, hidden_dim, num_classes, dropout=0.2):
        super(LinkPredModel, self).__init__()
        self.conv1 = SAGEConv(input_dim, hidden_dim)
        self.conv2 = SAGEConv(hidden_dim, num_classes)
        self.loss_fn =nn.BCEWithLogitsLoss()
  self.dropout = dropout
    def reset_parameters(self):
        self.conv1.reset_parameters()
        self.conv2.reset_parameters()
    def forward(self, batch):
        node_feature, edge_index, edge_label_index = batch.node_feature, batch.edge_index, batch.edge_label_index
        pred=self.conv1(node_feature,edge_index)
        pred=F.relu(pred)
        pred=F.dropout(pred,self.dropout,self.training)
        pred=self.conv2(pred,edge_index)  #[节点数,num_classes]
        sp_edges=pred[edge_label_index]  #[2,supervision边数,num_classes]
        #这个索引感觉还挺tricky的,但是总之就是这么一回事
        source_nodes=sp_edges[0]  #[supervision边数,num_classes]
        destination_nodes=sp_edges[1]
        pred=(source_nodes*destination_nodes).sum(axis=1)
        #点积计算相似性,就相似性越高认为两点之间越有边嘛
        return pred
    def loss(self, pred, link_label):
        return self.loss_fn(pred, link_label)


2.8.2 构建 train() 和 test() 函数

from sklearn.metrics import *
def train(model, dataloaders, optimizer, args):
    val_max = 0
    best_model = model
    for epoch in range(1, args["epochs"]):
        for i, batch in enumerate(dataloaders['train']):
            batch.to(args["device"])
            model.train()
            optimizer.zero_grad()
            p=model(batch)
            loss=model.loss(p,batch.edge_label.float())  #第二个参数也可以用type_as(pred)),这个写法好tricky啊
            loss.backward()
            optimizer.step()
            log = 'Epoch: {:03d}, Train: {:.4f}, Val: {:.4f}, Test: {:.4f}, Loss: {}'
            score_train = test(model, dataloaders['train'], args)
            score_val = test(model, dataloaders['val'], args)
            score_test = test(model, dataloaders['test'], args)
            print(log.format(epoch, score_train, score_val, score_test, loss.item()))
            if val_max < score_val:
                val_max = score_val
                best_model = copy.deepcopy(model)
    return best_model
def test(model, dataloader, args):
    model.eval()
    score = 0
    for batch in dataloader:
        batch.to(args["device"])
        p=model(batch)
        #p=nn.Sigmoid(p)不能直接这样写,因为这是一个Module,不是一个直接可用的方法
        p=torch.sigmoid(p)
        p=p.cpu().detach().numpy()  #这后面跟的一堆是输出让我这么干的……
        label=batch.edge_label.cpu().detach().numpy()
        score+=roc_auc_score(label,p)
    score=score/len(dataloader)
    return score



2.8.3 设置超参

args = {
    "device" : 'cuda' if torch.cuda.is_available() else 'cpu',
    "hidden_dim" : 128,
    "epochs" : 200,
}


2.8.4 训练

pyg_dataset = Planetoid('/tmp/cora', 'Cora')
graphs = GraphDataset.pyg_to_graphs(pyg_dataset)
dataset = GraphDataset(
        graphs,
        task='link_pred',
        edge_train_mode="disjoint"
    )
datasets = {}
datasets['train'], datasets['val'], datasets['test']= dataset.split(
            transductive=True, split_ratio=[0.85, 0.05, 0.1])
input_dim = datasets['train'].num_node_features
num_classes = datasets['train'].num_edge_labels
model = LinkPredModel(input_dim, args["hidden_dim"], num_classes).to(args["device"])
model.reset_parameters()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
dataloaders = {split: DataLoader(
            ds, collate_fn=Batch.collate([]),
            batch_size=1, shuffle=(split=='train'))
            for split, ds in datasets.items()}
best_model = train(model, dataloaders, optimizer, args)
log = "Train: {:.4f}, Val: {:.4f}, Test: {:.4f}"
best_train_roc = test(best_model, dataloaders['train'], args)
best_val_roc = test(best_model, dataloaders['val'], args)
best_test_roc = test(best_model, dataloaders['test'], args)
print(log.format(best_train_roc, best_val_roc, best_test_roc))


全部输出不赘。

最好模型的最终结果:


Train: 0.8857, Val: 0.8044, Test: 0.8090



相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
机器学习/深度学习 计算机视觉 Python
模型预测笔记(三):通过交叉验证网格搜索机器学习的最优参数
本文介绍了网格搜索(Grid Search)在机器学习中用于优化模型超参数的方法,包括定义超参数范围、创建参数网格、选择评估指标、构建模型和交叉验证策略、执行网格搜索、选择最佳超参数组合,并使用这些参数重新训练模型。文中还讨论了GridSearchCV的参数和不同机器学习问题适用的评分指标。最后提供了使用决策树分类器进行网格搜索的Python代码示例。
59 1
|
3月前
|
机器学习/深度学习 算法 Python
【绝技揭秘】Andrew Ng 机器学习课程第十周:解锁梯度下降的神秘力量,带你飞速征服数据山峰!
【8月更文挑战第16天】Andrew Ng 的机器学习课程是学习该领域的经典资源。第十周聚焦于优化梯度下降算法以提升效率。课程涵盖不同类型的梯度下降(批量、随机及小批量)及其应用场景,介绍如何选择合适的批量大小和学习率调整策略。还介绍了动量法、RMSProp 和 Adam 优化器等高级技巧,这些方法能有效加速收敛并改善模型性能。通过实践案例展示如何使用 Python 和 NumPy 实现小批量梯度下降。
41 1
|
5月前
|
机器学习/深度学习 算法 BI
机器学习笔记(一) 感知机算法 之 原理篇
机器学习笔记(一) 感知机算法 之 原理篇
|
5月前
|
机器学习/深度学习 搜索推荐 PyTorch
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
【机器学习】图神经网络:深度解析图神经网络的基本构成和原理以及关键技术
1150 2
|
5月前
|
机器学习/深度学习 算法 数据可视化
技术心得记录:机器学习笔记之聚类算法层次聚类HierarchicalClustering
技术心得记录:机器学习笔记之聚类算法层次聚类HierarchicalClustering
52 0
|
5月前
|
机器学习/深度学习 分布式计算 API
技术好文:Spark机器学习笔记一
技术好文:Spark机器学习笔记一
40 0
|
6月前
|
机器学习/深度学习 自然语言处理 PyTorch
fast.ai 机器学习笔记(四)(1)
fast.ai 机器学习笔记(四)
137 1
fast.ai 机器学习笔记(四)(1)
|
6月前
|
机器学习/深度学习 监控 算法
LabVIEW使用机器学习分类模型探索基于技能课程的学习
LabVIEW使用机器学习分类模型探索基于技能课程的学习
52 1
|
6月前
|
机器学习/深度学习 算法 图计算
图机器学习入门:基本概念介绍
图机器学习是机器学习的分支,专注于处理图形结构数据,其中节点代表实体,边表示实体间关系。本文介绍了图的基本概念,如无向图与有向图,以及图的性质,如节点度、邻接矩阵。此外,还讨论了加权图、自循环、多重图、双部图、异构图、平面图和循环图。图在描述数据关系和特征方面具有灵活性,为机器学习算法提供了丰富的结构信息。
147 0
|
6月前
|
机器学习/深度学习 Python 索引
fast.ai 机器学习笔记(二)(4)
fast.ai 机器学习笔记(二)
55 0
fast.ai 机器学习笔记(二)(4)