数据仓库复习(七)

简介: 数仓建模-实体建模法

实体建模法并不是数据仓库建模中常见的一个方法,它来源于哲学的一个流派。从哲学的意义上说,客观世界应该是可以细分的,客观世界应该可以分成由一个个实体,以及实体与实体之间的关系组成。那么我们在数据仓库的建模过程中完全可以引入这个抽象的方法,将整个业务也可以划分成一个个的实体,而每个实体之间的关系,以及针对这些关系的说明就是我们数据建模需要做的工作。

虽然实体法粗看起来好像有一些抽象,其实理解起来很容易。即我们可以将任何一个业务过程划分成 3 个部分,实体,事件,说明,如下图所示:

网络异常,图片无法展示
|
实体建模

上图表述的是一个抽象的含义,如果我们描述一个简单的事实:“小明开车去学校上学”。以这个业务事实为例,我们可以把“小明”,“学校”看成是一个实体,“上学”描述的是一个业务过程,我们在这里可以抽象为一个具体“事件”,而“开车去”则可以看成是事件“上学”的一个说明。

目录
相关文章
|
存储 数据采集 监控
【2022持续更新】大数据最全知识点整理-数据仓库篇
【2022持续更新】大数据最全知识点整理-数据仓库篇
1743 0
【2022持续更新】大数据最全知识点整理-数据仓库篇
|
存储 数据挖掘 大数据
第16章 数据仓库与联机分析处理技术——复习笔记
第16章 数据仓库与联机分析处理技术——复习笔记
|
SQL 数据采集 存储
数据仓库实战 1
数据仓库实战 1
212 0
|
数据库
|
存储 数据挖掘 数据管理
数据仓库概论
数据仓库,英文名称Data Warehouse,可简写为DW和DWH,数据仓库顾名思义,是一个很大的数据存储集合,出于企业的分析性报告和决策支持目的而创建,它为企业提供一定的BI(商业智能)能力,指导业务流程改进、监视时间、成本、质量以及控制。数据库:数据库是面向交易的处理系统,它是针对具体业务在数据库联机的日常操作,通常对记录进行查询、修改。数据仓库的输入方式各种各样的数据源,最终的输出用于企业的数据分析、数据挖掘、数据报表等方向。数据库是面向事务的设计,数据仓库是面向主题设计的。数据库和数据仓库区别。
334 0
|
存储 数据采集 大数据
数据仓库面试知识总结
数据仓库面试知识总结
数据仓库面试知识总结
|
SQL 分布式计算 大数据
数据仓库实战教程
数据仓库已经是企业的数据竞争的核心了,学好数据仓库对提高自己和找到一份好的工作都至关重要,但是很多人对数仓的印象还是停留在写SQL的层面,其实今天的数仓更像是一个数据平台应用,我们学习的大数据技术其实最终的价值都体现在数据服务上,数仓是数据服务的基石,如果说业界以前还有离线和实时之分的话,那么现在实时数仓的提出与落地,未来数仓将是数据战争的最激烈的战场,一切大数据技术都将为数仓提供服务,也都将在数仓这一环节进行收口。 本专栏主要专注于数仓工具学习、数仓建模以及业务建模、SQL 实战和平台建设,最后以3家公司的数仓建建设和实时数仓作为结尾项目,这份教程有以下特点 1. 知识体系完善,从数仓的
874 2
|
SQL 存储 数据采集
数据仓库工程师面试题
数据仓库工程师面试题
|
存储 关系型数据库 数据库
数据仓库复习(五)
数仓建模法-范式建模
92 0