《深度学习》李宏毅 -- task6卷积神经网络

简介: CNN常常被用在影像处理上,比如说你想要做影像的分类,就是training一个neural network,input一张图片,然后把这张图片表示成里面的像素(pixel),也就是很长很长的矢量(vector)。output就是(假如你有1000个类别,output就是1000个dimension)dimension。

一、为什么要使用卷积神经网络(CNN)


image.png

CNN常常被用在影像处理上,比如说你想要做影像的分类,就是training一个neural network,input一张图片,然后把这张图片表示成里面的像素(pixel),也就是很长很长的矢量(vector)。output就是(假如你有1000个类别,output就是1000个dimension)dimension。

通常会遇到一些问题:


1.在training neural network时,我们希望在network的structure里面,每一个neural就是代表了一个最基本的classifier,事实是在文件上根据训练的结果,你有可能会得到很多这样的结论。


2.直接用fully connect feedforward network来做影像处理的时候,需要太多参数。


CNN能简化neural network的架构,处理影像时,某些weight用不上,我们一开始就把它滤掉。不是用fully connect feedforward network,而是用比较少的参数来做影像处理这件事。现在从下面3个方面进行阐述。



1.1 小区域(Small region )

image.png

处理影像时,对于第一层的 hidden layer,neural的作用是侦测某一种pattern,看它是否出现?大部分的pattern其实比整张的image还要小,对一个neural来说,假设它要知道一个image里面有没有出现某一个pattern,它不需要看整张image,只要看image的一小部分。


举例:假设我们现在有一张图片,第一个hidden layer的某一种neural的工作就是要侦测有没有鸟嘴的存在(有一些neural侦测有没有爪子的存在,有一些neural侦测有没有翅膀的存在,有没有尾巴的存在,合起来就可以侦测图片中某一只鸟)。其实它并不需要看整张图,只需要给neural看一小红色方框的区域(鸟嘴),它就可以知道它是不是一个鸟嘴。对人来说也是一样,看这一小块区域这是鸟嘴,不需要去看整张图才知道这件事情。所以,每一个neural连接到每一个小块的区域就好了,不需要连接到整张完整的图。



1.2 相同的图案(Same Patterns)

image.png

观察上图,同样的pattern在image里面,可能会出现在image不同的部分,但是代表的是同样的含义,它们有同样的形状,可以用同样的neural,同样的参数就可以把patter侦测出来。

在这张图里面,有一张在左上角的鸟嘴,有一个在中央的鸟嘴,但是你并不需要说:我们不需要去训练两个不同的探测器(detector),一个专门去侦测左上角的鸟嘴,一个去侦测中央有没有鸟嘴。如果这样做的话,这样就太冗了。我们不需要太多的冗源,这个nerual侦测左上角的鸟嘴跟侦测中央有没有鸟嘴做的事情是一样的。我们并不需要两个neural去做两组参数,我们就要求这两个neural用同一组参数,就样就可以减少需要参数的量。




1.3 二次抽样(Subsampling)

image.png

一个image,你可以做subsampling,把一个image的奇数行,偶数列的pixel拿掉,变成原来十分之一的大小,它其实不会影响人对这张image的理解。我们会觉得这两张image看起来可能没有太大的差别。所以我们就可以用这样的概念把image变小,这样就可以减少需要的参数。


二、CNN架构


image.png

CNN的架构如下:


1.输入一张图片后通过卷积层(convolution layer);

2.然后做max pooling;

3.再做卷积(convolution);

4.2-3步重复多次;(反复多少次是事先决定的,即network的架构)

5.压平(flatten);

6.最后把flatten的output丢到一般全连接前馈网络(fully connected feedforward network),就可以得到影像辨识的结果。

image.png

基于前面三个影像处理的观察,得出:


第一,要生成一个pattern,不要看整张的image,只需要看image的一小部分。

第二,通用的pattern会出现在一张图片的不同的区域。

第三,可以subsampling。

前面的两个property可以用convolution来处理掉,最后的property可以用Max Pooling这件事来处理。


三、卷积(Convolution)


image.png


3.1 属性1(Property1)


假设现在network的输入是一张6*6的Image,如果是黑白的,一个pixel就只需要用一个value去描述它,1就代表有涂墨水,0就代表没有涂到墨水。那在convolution layer里面,它由一组过滤(filter),(其中每一个filter其实就等同于是fully connect layer里面的一个neuron),每一个filter其实就是一个矩阵——matrix(3 *3),这每个filter里面的参数(matrix里面每一个element值)就是network的参数(parameter,这些parameter是要学习出来,不需要人去设计)


每个filter如果是3* 3的检测(detects)意味着它就是再侦测一个3 *3的pattern(看3 *3的一个范围)。在侦测pattern的时候不看整张image,只看一个3 *3的范围内就可以决定有没有某一个pattern的出现。这个就是我们考虑的第一个属性(Property)。



3.2 属性2(Propetry2)

image.png

filter跟image怎么运作?

首先第一个filter是一个3* 3的matrix,把这个filter放在image的左上角,把filter的9个值和image的9个值做内积,两边都是1,1,1(斜对角),内积的结果就得到3。(移动多少是事先决定的),移动的距离叫做步长(stride——stride等于多少,自己设计)。


四、卷积和全连接之间的关系


image.png

convolution就是fully connected layer把一些weight拿掉了。经过convolution的output其实就是一个hidden layer的neural的output。如果把这两个link在一起的话,convolution就是fully connected拿掉一些weight的结果。


五、Max pooling


image.png

如上图,根据filter 1得到4*4的maxtrix,根据filter2得到另一个4 *4的matrix,输出,4个一组。每一组里面可以选择它们的平均或者选最大的,把四个value合成一个value,让image缩小。

image.png

如果选择四个里面的max vlaue都保留下来,这样可能会有个问题,把这个放到neuron里面,这样就不能够微分了,但是可以用微分的办法来处理。

image.png

做完一个convolution和一次max pooling,就将原来6 * 6的image变成了一个2 *2的image。这个2 *2的pixel的深度depend你有几个filter,得到的结果就是一个new image but smaller,一个filter就代表了一个channel。

image.png

这件事可以重复多次,通过一个convolution + max pooling就得到新的 image。它是一个比较小的image,可以把这个小的image,做同样的事情,再次通过convolution + max pooling,将得到一个更小的image。


这边有一个问题:第一次有25个filter,得到25个feature map,第二个也是由25个filter,那将其做完是不是要得到2 5 2 25^2252的feature map。其实不是这样的!


假设第一层filter有2个,第二层的filter在考虑这个imput时是会考虑深度的,并不是每个channel分开考虑,而是一次考虑所有的channel。所以convolution有多少个filter,output就有多少个filter(convolution有25个filter,output就有25个filter。只不过,这25个filter都是一个立方体)


六、压平(Flatten)


image.png

flatten就是特征图(feature map)拉直,拉直之后就可以丢到fully connected feedforward netwwork,然后就结束了。


目录
相关文章
|
1月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
5月前
|
机器学习/深度学习 人工智能 运维
网管不再抓头发:深度学习教你提前发现网络事故
网管不再抓头发:深度学习教你提前发现网络事故
140 2
|
1月前
|
机器学习/深度学习 数据采集 人工智能
深度学习实战指南:从神经网络基础到模型优化的完整攻略
🌟 蒋星熠Jaxonic,AI探索者。深耕深度学习,从神经网络到Transformer,用代码践行智能革命。分享实战经验,助你构建CV、NLP模型,共赴二进制星辰大海。
|
2月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
383 11
|
4月前
|
机器学习/深度学习 人工智能 算法
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
Wi-Fi老是卡?不如试试让“深度学习”来当网络管家!
272 68
|
2月前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
208 0
|
4月前
|
机器学习/深度学习 人工智能 PyTorch
零基础入门CNN:聚AI卷积神经网络核心原理与工业级实战指南
卷积神经网络(CNN)通过局部感知和权值共享两大特性,成为计算机视觉的核心技术。本文详解CNN的卷积操作、架构设计、超参数调优及感受野计算,结合代码示例展示其在图像分类、目标检测等领域的应用价值。
278 7
|
3月前
|
机器学习/深度学习 算法 数据库
基于GoogleNet深度学习网络和GEI步态能量提取的步态识别算法matlab仿真,数据库采用CASIA库
本项目基于GoogleNet深度学习网络与GEI步态能量图提取技术,实现高精度步态识别。采用CASI库训练模型,结合Inception模块多尺度特征提取与GEI图像能量整合,提升识别稳定性与准确率,适用于智能安防、身份验证等领域。
|
5月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
5月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容包含时间序列预测算法的相关资料,涵盖以下几个方面:1. 算法运行效果预览(无水印);2. 运行环境为Matlab 2022a/2024b;3. 提供部分核心程序,完整版含中文注释及操作视频;4. 理论概述:结合时间卷积神经网络(TCN)与鲸鱼优化算法(WOA),优化TCN超参数以提升非线性时间序列预测性能。通过因果卷积层与残差连接构建TCN模型,并用WOA调整卷积核大小、层数等参数,实现精准预测。适用于金融、气象等领域决策支持。
下一篇
oss云网关配置