动手学习数据分析(五)——数据建模及模型评估

简介: 对分类变量缺失值:填充某个缺失值字符(NA)、用最多类别的进行填充对连续变量缺失值:填充均值、中位数、众数

数据建模及模型评估


1.特征工程

1.1 缺失值填充

对分类变量缺失值:填充某个缺失值字符(NA)、用最多类别的进行填充

对连续变量缺失值:填充均值、中位数、众数


2.模型搭建

处理完前面的数据我们就得到建模数据,下一步是选择合适模型在进行模型选择之前我们需要先知道数据集最终是进行监督学习还是无监督学习.除了根据我们任务来选择模型外,还可以根据数据样本量以及特征的稀疏性来决定刚开始我们总是先尝试使用一个基本的模型来作为其baseline,进而再训练其他模型做对比,最终选择泛化能力或性能比较好的模型


2.1 切割训练集和测试集

按比例切割训练集和测试集(一般测试集的比例有30%、25%、20%、15%和10%)

按目标变量分层进行等比切割

设置随机种子以便结果能复现


2.2 模型创建

创建基于线性模型的分类模型(逻辑回归)

创建基于树的分类模型(决策树、随机森林)

查看模型的参数,并更改参数值,观察模型变化


2.3 输出模型预测结果

输出模型预测分类标签

输出不通分类标签的预测概率


3.模型评估

模型评估是为了知道模型的泛化能力。

交叉验证(cross-validation)是一种评估泛化性能的统计学方法,它比单次划分训练集和测试集的方法更加稳定、全面。

在交叉验证中,数据被多次划分,并且需要训练多个模型。

最常用的交叉验证是 k 折交叉验证(k-fold cross-validation),其中 k 是由用户指定的数字,通常取 5 或 10。

准确率(precision)度量的是被预测为正例的样本中有多少是真正的正例

召回率(recall)度量的是正类样本中有多少被预测为正类

f-分数是准确率与召回率的调和平均


3.1 交叉验证

用10折交叉验证来评估逻辑回归模型

计算交叉验证精度的平均值


3.2 混淆矩阵

计算二分类问题的混淆矩阵

计算精确率、召回率以及f-分数


目录
打赏
0
0
0
0
521
分享
相关文章
实战派教学:掌握Scikit-learn,轻松实现数据分析与机器学习模型优化!
【10月更文挑战第4天】Scikit-learn凭借高效、易用及全面性成为数据科学领域的首选工具,简化了数据预处理、模型训练与评估流程,并提供丰富算法库。本文通过实战教学,详细介绍Scikit-learn的基础入门、数据预处理、模型选择与训练、评估及调优等关键步骤,助你快速掌握并优化数据分析与机器学习模型。从环境搭建到参数调优,每一步都配有示例代码,便于理解和实践。
180 2
基于机器学习的数据分析:PLC采集的生产数据预测设备故障模型
本文介绍如何利用Python和Scikit-learn构建基于PLC数据的设备故障预测模型。通过实时采集温度、振动、电流等参数,进行数据预处理和特征提取,选择合适的机器学习模型(如随机森林、XGBoost),并优化模型性能。文章还分享了边缘计算部署方案及常见问题排查,强调模型预测应结合定期维护,确保系统稳定运行。
108 0
利用数据分析工具评估特定业务场景下扩缩容操作对性能的影响
通过以上数据分析工具的运用,可以深入挖掘数据背后的信息,准确评估特定业务场景下扩缩容操作对 PolarDB Serverless 性能的影响。同时,这些分析结果还可以为后续的优化和决策提供有力的支持,确保业务系统在不断变化的环境中保持良好的性能表现。
107 48
ChatGPT在数据分析学习阶段的应用
ChatGPT在数据分析学习阶段的应用
77 6
Python数据分析革命:Scikit-learn库,让机器学习模型训练与评估变得简单高效!
在数据驱动时代,Python 以强大的生态系统成为数据科学的首选语言,而 Scikit-learn 则因简洁的 API 和广泛的支持脱颖而出。本文将指导你使用 Scikit-learn 进行机器学习模型的训练与评估。首先通过 `pip install scikit-learn` 安装库,然后利用内置数据集进行数据准备,选择合适的模型(如逻辑回归),并通过交叉验证评估其性能。最终,使用模型对新数据进行预测,简化整个流程。无论你是新手还是专家,Scikit-learn 都能助你一臂之力。
262 8
"揭秘数据质量自动化的秘密武器:机器学习模型如何精准捕捉数据中的‘隐形陷阱’,让你的数据分析无懈可击?"
【8月更文挑战第20天】随着大数据成为核心资源,数据质量直接影响机器学习模型的准确性和效果。传统的人工审查方法效率低且易错。本文介绍如何运用机器学习自动化评估数据质量,解决缺失值、异常值等问题,提升模型训练效率和预测准确性。通过Python和scikit-learn示例展示了异常值检测的过程,最后强调在自动化评估的同时结合人工审查的重要性。
170 2
基于Python Django的房价数据分析平台,包括大屏和后台数据管理,有线性、向量机、梯度提升树、bp神经网络等模型
本文介绍了一个基于Python Django框架开发的房价数据分析平台,该平台集成了多种机器学习模型,包括线性回归、SVM、GBDT和BP神经网络,用于房价预测和市场分析,同时提供了前端大屏展示和后台数据管理功能。
177 9
【python】python母婴数据分析模型预测可视化(数据集+论文+PPT+源码)【独一无二】
【python】python母婴数据分析模型预测可视化(数据集+论文+PPT+源码)【独一无二】
133 1
从零到精通:Scikit-learn在手,数据分析与机器学习模型评估不再难!
【7月更文挑战第25天】在数据科学中,模型评估是理解模型泛化能力的关键。对新手来说,众多评估指标可能令人困惑,但Scikit-learn简化了这一过程。
88 2
解锁Python数据分析新技能!Pandas实战学习,让你的数据处理能力瞬间飙升!
【8月更文挑战第22天】Python中的Pandas库简化了数据分析工作。本文通过分析一个金融公司的投资数据文件“investment_data.csv”,介绍了Pandas的基础及高级功能。首先读取并检查数据,包括显示前几行、列名、形状和数据类型。随后进行数据清洗,移除缺失值与重复项。接着转换日期格式,并计算投资收益。最后通过分组计算平均投资回报率,展示了Pandas在数据处理与分析中的强大能力。
71 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等