深度学习推荐模型-DeepFM

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
模型训练 PAI-DLC,5000CU*H 3个月
简介: 在DeepFM提出之前,已有LR,FM,FFM,FNN,PNN(以及三种变体:IPNN,OPNN,PNN*),Wide&Deep模型,这些模型在CTR或者是推荐系统中被广泛使用。

ffe68336224a352089bfa7da456cb76e_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxX3h1YW5zaHVhbmc=,size_16,color_FFFFFF,t_70.png

在DeepFM提出之前,已有LR,FM,FFM,FNN,PNN(以及三种变体:IPNN,OPNN,PNN*),Wide&Deep模型,这些模型在CTR或者是推荐系统中被广泛使用。


DeepFM模型结合了广度和深度模型的有点,联合训练FM模型和DNN模型,来同时学习低阶特征组合和高阶特征组合。此外,DeepFM模型的Deep component和FM component从Embedding层共享数据输入,这样做的好处是Embedding层的隐式向量在(残差反向传播)训练时可以同时接受到Deep component和FM component的信息,从而使Embedding层的信息表达更加准确而最终提升推荐效果。DeepFM相对于现有的广度模型、深度模型以及Wide&Deep; DeepFM模型的优势在于:


DeepFM模型同时对低阶特征组合和高阶特征组合建模,从而能够学习到各阶特征之间的组合关系。



DeepFM算法原理:

FM Component + Deep Component。FM提取低阶组合特征,Deep提取高阶组合特征。但是和Wide&Deep不同的是,DeepFM是端到端的训练,不需要人工特征工程。


共享feature embedding。FM和Deep共享输入和feature embedding不但使得训练更快,而且使得训练更加准确。相比之下,Wide&Deep中,input vector非常大,里面包含了大量的人工设计的pairwise组合特征,增加了他的计算复杂度。


DeepFM架构图:


image.png

DeepFM包含两部分,左边的FM部分和右边的DNN部分。这两部分共享相同的输入。

1.FM

详细内容参考FM模型部分的内容,下图是FM的一个结构图,从图中大致可以看出FM Layer是由一阶特征和二阶特征Concatenate到一起在经过一个Sigmoid得到logits(结合FM的公式一起看),所以在实现的时候需要单独考虑linear部分和FM交叉特征部分。

image.png


2.Deep

image.png

Deep Module是为了学习高阶的特征组合,在上图中使用用全连接的方式将Dense Embedding输入到Hidden Layer,这里面Dense Embeddings就是为了解决DNN中的参数爆炸问题,这也是推荐模型中常用的处理方法。


DeepFM模型对比


目前在推荐领域中比较流行的深度模型有FNN、PNN、Wide&Deep。


FNN模型是用FM模型来对Embedding层进行初始化的全连接神经网络。

PNN模型则是在Embedding层和全连接层之间引入了内积/外积层,来学习特征之间的交互关系。

Wide&Deep模型由谷歌提出,将LR和DNN联合训练,在Google Play取得了线上效果的提升。Wide&Deep模型,很大程度上满足了模型同时学习低阶特征和高阶特征的需求,让模型同时具备较好的“memorization”和“generalization”。但是需要人工特征工程来为Wide模型选取输入特征。具体而言,对哪些稀疏的特征进行embedding,是由人工指定的。

Wide&Deep和DeepFM模型不同点主要有以下两点:

1.wide模型部分由LR替换为FM。FM模型具有自动学习交叉特征的能力,避免了原始Wide & Deep模型中浅层部分人工特征工程的工作。

2.共享原始输入特征。DeepFM模型的原始特征将作为FM和Deep模型部分的共同输入,保证模型特征的准确与一致。


DeepFM的三大优势:


相对于Wide&Deep不再需要手工构建wide部分;

相对于FNN把FM的隐向量参数直接作为网络参数学习;

DeepFM将embedding层结果输入给FM和MLP,两者输出叠加,达到捕捉了低阶和高阶特征交叉的目的。


目录
相关文章
|
16天前
|
机器学习/深度学习 数据采集 TensorFlow
使用Python实现智能食品市场预测的深度学习模型
使用Python实现智能食品市场预测的深度学习模型
56 5
|
11天前
|
机器学习/深度学习 数据采集 运维
使用 Python 实现深度学习模型:智能食品生产线优化
使用 Python 实现深度学习模型:智能食品生产线优化
47 13
|
7天前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
27 5
|
16天前
|
机器学习/深度学习 人工智能 自然语言处理
探索深度学习中的Transformer模型
探索深度学习中的Transformer模型
26 1
|
18天前
|
机器学习/深度学习 算法 开发者
探索深度学习中的优化器选择对模型性能的影响
在深度学习领域,优化器的选择对于模型训练的效果具有决定性作用。本文通过对比分析不同优化器的工作原理及其在实际应用中的表现,探讨了如何根据具体任务选择合适的优化器以提高模型性能。文章首先概述了几种常见的优化算法,包括梯度下降法、随机梯度下降法(SGD)、动量法、AdaGrad、RMSProp和Adam等;然后,通过实验验证了这些优化器在不同数据集上训练神经网络时的效率与准确性差异;最后,提出了一些基于经验的规则帮助开发者更好地做出选择。
|
18天前
|
机器学习/深度学习 算法 数据可视化
使用Python实现深度学习模型:智能食品配送优化
使用Python实现深度学习模型:智能食品配送优化
36 2
|
17天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
55 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
17天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
62 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现深度学习模型:智能食品市场分析
使用Python实现深度学习模型:智能食品市场分析
21 0
|
7天前
|
机器学习/深度学习 数据采集 人工智能
探索人工智能中的深度学习模型优化策略
探索人工智能中的深度学习模型优化策略

热门文章

最新文章