大数据开发笔记(九):Flink综合学习)(一)

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。并且 Flink 提供了数据分布、容错机制以及资源管理等核心功能。Flink提供了诸多高抽象层的API以便用户编写分布式任务

Flink基础


1、简单介绍一下 Flink

Flink 是一个框架和分布式处理引擎,用于对无界和有界数据流进行有状态计算。并且 Flink 提供了数据分布、容错机制以及资源管理等核心功能。Flink提供了诸多高抽象层的API以便用户编写分布式任务:


DataSet API, 对静态数据进行批处理操作,将静态数据抽象成分布式的数据集,用户可以方便地使用Flink提供的各种操作符对分布式数据集进行处理,支持Java、Scala和Python。


DataStream API,对数据流进行流处理操作,将流式的数据抽象成分布式的数据流,用户可以方便地对分布式数据流进行各种操作,支持Java和Scala。


Table API,对结构化数据进行查询操作,将结构化数据抽象成关系表,并通过类SQL的DSL对关系表进行各种查询操作,支持Java和Scala。


此外,Flink 还针对特定的应用领域提供了领域库,例如: Flink ML,Flink 的机器学习库,提供了机器学习Pipelines API并实现了多种机器学习算法, Gelly,Flink 的图计算库,提供了图计算的相关API及多种图计算算法实现。


2、Flink相比传统的Spark Streaming区别?

这个问题是一个非常宏观的问题,因为两个框架的不同点非常之多。但是在面试时有非常重要的一点一定要回答出来:Flink 是标准的实时处理引擎,基于事件驱动。而 Spark Streaming 是微批(Micro-Batch)的模型 。


下面我们就分几个方面介绍两个框架的主要区别:


架构模型Spark Streaming 在运行时的主要角色包括:Master、Worker、Driver、Executor,Flink 在运行时主要包含:Jobmanager、Taskmanager和Slot。

任务调度Spark Streaming 连续不断的生成微小的数据批次,构建有向无环图DAG,Spark Streaming 会依次创建 DStreamGraph、JobGenerator、JobScheduler。Flink 根据用户提交的代码生成 StreamGraph,经过优化生成 JobGraph,然后提交给 JobManager进行处理,JobManager 会根据 JobGraph 生成 ExecutionGraph,ExecutionGraph 是 Flink 调度最核心的数据结构,JobManager 根据 ExecutionGraph 对 Job 进行调度。

时间机制Spark Streaming 支持的时间机制有限,只支持处理时间。 Flink 支持了流处理程序在时间上的三个定义:处理时间、事件时间、注入时间。同时也支持 watermark 机制来处理滞后数据。

容错机制对于 Spark Streaming 任务,我们可以设置 checkpoint,然后假如发生故障并重启,我们可以从上次 checkpoint 之处恢复,但是这个行为只能使得数据不丢失,可能会重复处理,不能做到恰好一次处理语义。Flink 则使用两阶段提交协议来解决这个问题。


3、Flink的组件栈有哪些?

根据 Flink 官网描述,Flink 是一个分层架构的系统,每一层所包含的组件都提供了特定的抽象,用来服务于上层组件。

a2311dc8f73b112a2fa7a6388cd1c178_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDMxODgzMA==,size_16,color_FFFFFF,t_70#pic_center.png

自下而上,每一层分别代表:Deploy 层:该层主要涉及了Flink的部署模式,在上图中我们可以看出,Flink 支持包括local、Standalone、Cluster、Cloud等多种部署模式 。


Runtime 层:Runtime层提供了支持 Flink 计算的核心实现,比如:支持分布式 Stream 处理、JobGraph到ExecutionGraph的映射、调度等等,为上层API层提供基础服务 。


API层: API 层主要实现了面向流(Stream)处理和批(Batch)处理API,其中面向流处理对应DataStream API,面向批处理对应DataSet API,后续版本,Flink有计划将DataStream和DataSet API进行统一 。


Libraries层: 该层称为Flink应用框架层,根据API层的划分,在API层之上构建的满足特定应用的实现计算框架,也分别对应于面向流处理和面向批处理两类。面向流处理支持:CEP(复杂事件处理)、基于SQL-like的操作(基于Table的关系操作);面向批处理支持:FlinkML(机器学习库)、Gelly(图处理)。


4、Flink 的运行必须依赖 Hadoop组件吗?

Flink可以完全独立于Hadoop,在不依赖Hadoop组件下运行。但是做为大数据的基础设施,Hadoop体系是任何大数据框架都绕不过去的。Flink可以集成众多Hadooop 组件,例如Yarn、Hbase、HDFS等等。例如,Flink可以和Yarn集成做资源调度,也可以读写HDFS,或者利用HDFS做检查点。


5、你们的Flink集群规模多大?

大家注意,这个问题看起来是问你实际应用中的Flink集群规模,其实还隐藏着另一个问题:Flink可以支持多少节点的集群规模?在回答这个问题时候,可以将自己生产环节中的集群规模、节点、内存情况说明,同时说明部署模式(一般是Flink on Yarn),除此之外,用户也可以同时在小集群(少于5个节点)和拥有 TB 级别状态的上千个节点上运行 Flink 任务。


6、Flink的基础编程模型了解吗?

9d31dd913ae14e65f6ff9713d74a6f4c_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDMxODgzMA==,size_16,color_FFFFFF,t_70#pic_center.png

上图是来自Flink官网的运行流程图。通过上图我们可以得知,Flink 程序的基本构建是数据输入来自一个 Source,Source 代表数据的输入端,经过 Transformation 进行转换,然后在一个或者多个Sink接收器中结束。数据流(stream)就是一组永远不会停止的数据记录流,而转换(transformation)是将一个或多个流作为输入,并生成一个或多个输出流的操作。执行时,Flink程序映射到 streaming dataflows,由流(streams)和转换操作(transformation operators)组成。


7、Flink集群有哪些角色?各自有什么作用?

0e153b82fdfc9be62e408cc18c15567d_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDMxODgzMA==,size_16,color_FFFFFF,t_70#pic_center.png

Flink 程序在运行时主要有 TaskManager,JobManager,Client 三种角色。


其中JobManager扮演着集群中的管理者Master的角色,它是整个集群的协调者,负责接收Flink Job,协调检查点,Failover 故障恢复等,同时管理Flink集群中从节点TaskManager。


TaskManager是实际负责执行计算的Worker,在其上执行Flink Job的一组Task,每个TaskManager负责管理其所在节点上的资源信息,如内存、磁盘、网络,在启动的时候将资源的状态向JobManager汇报。


Client是Flink程序提交的客户端,当用户提交一个Flink程序时,会首先创建一个Client,该Client首先会对用户提交的Flink程序进行预处理,并提交到Flink集群中处理,所以Client需要从用户提交的Flink程序配置中获取JobManager的地址,并建立到JobManager的连接,将Flink Job提交给JobManager。


8、说说 Flink 资源管理中 Task Slot 的概念

e1b98a298429030d381876f57160bf5b_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDMxODgzMA==,size_16,color_FFFFFF,t_70#pic_center.png

 在Flink架构角色中我们提到,TaskManager是实际负责执行计算的Worker,TaskManager 是一个 JVM 进程,并会以独立的线程来执行一个task或多个subtask。为了控制一个 TaskManager 能接受多少个 task,Flink 提出了 Task Slot 的概念。简单的说,TaskManager会将自己节点上管理的资源分为不同的Slot:固定大小的资源子集。这样就避免了不同Job的Task互相竞争内存资源,但是需要主要的是,Slot只会做内存的隔离。没有做CPU的隔离。


9、说说 Flink 的常用算子?


       Flink 最常用的常用算子包括:Map:DataStream → DataStream,输入一个参数产生一个参数,map的功能是对输入的参数进行转换操作。Filter:过滤掉指定条件的数据。KeyBy:按照指定的key进行分组。Reduce:用来进行结果汇总合并。Window:窗口函数,根据某些特性将每个key的数据进行分组(例如:在5s内到达的数据)


10、说说你知道的Flink分区策略?

       要搞懂什么是分区策略,需要清楚分区策略是用来决定数据如何发送至下游。目前 Flink 支持了8种分区策略的实现。


       上图是整个Flink实现的分区策略继承图:GlobalPartitioner 数据会被分发到下游算子的第一个实例中进行处理。ShufflePartitioner数据会被随机分发到下游算子的每一个实例中进行处理。RebalancePartitioner 数据会被循环发送到下游的每一个实例中进行处理。RescalePartitioner这种分区器会根据上下游算子的并行度,循环的方式输出到下游算子的每个实例。这里有点难以理解,假设上游并行度为2,编号为A和B。下游并行度为4,编号为1,2,3,4。那么A则把数据循环发送给1和2,B则把数据循环发送给3和4。假设上游并行度为4,编号为A,B,C,D。下游并行度为2,编号为1,2。那么A和B则把数据发送给1,C和D则把数据发送给2。BroadcastPartitioner广播分区会将上游数据输出到下游算子的每个实例中。适合于大数据集和小数据集做Jion的场景。ForwardPartitioner ForwardPartitioner用于将记录输出到下游本地的算子实例。它要求上下游算子并行度一样。简单的说,ForwardPartitioner用来做数据的控制台打印。KeyGroupStreamPartitionerHash分区器。会将数据按 Key 的 Hash 值输出到下游算子实例中。CustomPartitionerWrapper用户自定义分区器。需要用户自己实现Partitioner接口,来定义自己的分区逻辑。例如:


static classCustomPartitionerimplementsPartitioner<String> {
@Override
publicintpartition(String key, int numPartitions) {
switch (key){
case "1":
return 1;
case "2":
return 2;
case "3":
return 3;
default:
return 4;
}
}
}


11、Flink的并行度了解吗?Flink的并行度设置是怎样的?

Flink中的任务被分为多个并行任务来执行,其中每个并行的实例处理一部分数据。这些并行实例的数量被称为并行度。我们在实际生产环境中可以从四个不同层面设置并行度:


操作算子层面(Operator Level)


执行环境层面(Execution Environment Level)


客户端层面(Client Level)


系统层面(System Level)


需要注意的优先级:算子层面>环境层面>客户端层面>系统层面。


12、 Flink的Slot和parallelism有什么区别?

a91ac4bb65d8e1f082c73869a0311451_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDMxODgzMA==,size_16,color_FFFFFF,t_70#pic_center.png

slot是指 taskmanager 的并发执行能力,假设我们将 taskmanager.numberOfTaskSlots 配置为3 那么每一个 taskmanager 中分配3个 TaskSlot, 3个 taskmanager 一共有9个TaskSlot。

c6eb6b29ffa8e4dfb322cd582c04c257_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDMxODgzMA==,size_16,color_FFFFFF,t_70#pic_center.png

parallelism是指taskmanager实际使用的并发能力。假设我们把 parallelism.default 设置为1,那么9个 TaskSlot 只能用1个,有8个空闲。


13、Flink有没有重启策略?说说有哪几种?

Flink 实现了多种重启策略。

固定延迟重启策略(Fixed Delay Restart Strategy)

故障率重启策略(Failure Rate Restart Strategy)

没有重启策略(No Restart Strategy)

Fallback重启策略(Fallback Restart Strategy)


14、用过Flink中的分布式缓存吗?如何使用?

Flink实现的分布式缓存和Hadoop有异曲同工之妙。目的是在本地读取文件,并把他放在 taskmanager 节点中,防止task重复拉取。


val env = ExecutionEnvironment.getExecutionEnvironment
// register a file from HDFS
env.registerCachedFile("hdfs:///path/to/your/file", "hdfsFile")
// register a local executable file (script, executable, ...)
env.registerCachedFile("file:///path/to/exec/file", "localExecFile", true)
// define your program and execute
...
val input: DataSet[String] = ...
val result: DataSet[Integer] = input.map(new MyMapper())
...
env.execute()


15、说说Flink中的广播变量,使用时需要注意什么?

我们知道Flink是并行的,计算过程可能不在一个 Slot 中进行,那么有一种情况即:当我们需要访问同一份数据。那么Flink中的广播变量就是为了解决这种情况。我们可以把广播变量理解为是一个公共的共享变量,我们可以把一个dataset 数据集广播出去,然后不同的task在节点上都能够获取到,这个数据在每个节点上只会存在一份。


16、说说Flink中的窗口?

说说Flink中的窗口?

405d0aa839e7a9d9e9c5a6530214f87a_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80NDMxODgzMA==,size_16,color_FFFFFF,t_70#pic_center.png

Flink 支持两种划分窗口的方式,按照time和count。如果根据时间划分窗口,那么它就是一个time-window 。如果根据数据划分窗口,那么它就是一个 count-window。flink支持窗口的两个重要属性(size和interval)如果size=interval,那么就会形成tumbling-window(无重叠数据) ;如果size>interval,那么就会形成sliding-window(有重叠数据) 如果size< interval, 那么这种窗口将会丢失数据。比如每5秒钟,统计过去3秒的通过路口汽车的数据,将会漏掉2秒钟的数据。通过组合可以得出四种基本窗口:

time-tumbling-window 无重叠数据的时间窗口,设置方式举例:timeWindow(Time.seconds(5))
time-sliding-window 有重叠数据的时间窗口,设置方式举例:timeWindow(Time.seconds(5), Time.seconds(3))
count-tumbling-window无重叠数据的数量窗口,设置方式举例:countWindow(5)
count-sliding-window 有重叠数据的数量窗口,设置方式举例:countWindow(5,3)


17、说说Flink中的状态存储?

Flink在做计算的过程中经常需要存储中间状态,来避免数据丢失和状态恢复。选择的状态存储策略不同,会影响状态持久化如何和 checkpoint 交互。


Flink提供了三种状态存储方式:MemoryStateBackend、FsStateBackend、RocksDBStateBackend。


18、Flink中的时间有哪几类

Flink 中的时间和其他流式计算系统的时间一样分为三类:事件时间,摄入时间,处理时间三种。如果以 EventTime为基准来定义时间窗口将形成EventTimeWindow,要求消息本身就应该携带EventTime。如果以IngesingtTime 为基准来定义时间窗口将形成 IngestingTimeWindow,以 source 的systemTime为准。如果以 ProcessingTime 基准来定义时间窗口将形成 ProcessingTimeWindow,以 operator 的systemTime 为准。


19、Flink中的水印是什么概念,起到什么作用?

Watermark 是 Apache Flink 为了处理 EventTime 窗口计算提出的一种机制, 本质上是一种时间戳。 一般来讲Watermark经常和Window一起被用来处理乱序事件。


20、Flink Table & SQL 熟悉吗?TableEnvironment这个类有什么作用

TableEnvironment是Table API和SQL集成的核心概念。这个类主要用来:


在内部 catalog 中注册表

注册外部 catalog

执行SQL查询

注册用户定义(标量,表或聚合)函数

将DataStream或DataSet转换为表

持有对 ExecutionEnvironment 或 StreamExecutionEnvironment 的引用


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
18天前
|
数据采集 数据可视化 大数据
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
这篇文章介绍了如何使用Python中的matplotlib和numpy库来创建箱线图,以检测和处理数据集中的异常值。
27 1
大数据体系知识学习(三):数据清洗_箱线图的概念以及代码实现
|
1天前
|
分布式计算 大数据 OLAP
AnalyticDB与大数据生态集成:Spark & Flink
【10月更文挑战第25天】在大数据时代,实时数据处理和分析变得越来越重要。AnalyticDB(ADB)是阿里云推出的一款完全托管的实时数据仓库服务,支持PB级数据的实时分析。为了充分发挥AnalyticDB的潜力,将其与大数据处理工具如Apache Spark和Apache Flink集成是非常必要的。本文将从我个人的角度出发,分享如何将AnalyticDB与Spark和Flink集成,构建端到端的大数据处理流水线,实现数据的实时分析和处理。
11 1
|
8天前
|
存储 SQL 分布式计算
大数据学习
【10月更文挑战第15天】
15 1
|
18天前
|
分布式计算 大数据 Linux
大数据体系知识学习(二):WordCount案例实现及错误总结
这篇文章介绍了如何使用PySpark进行WordCount操作,包括环境配置、代码实现、运行结果和遇到的错误。作者在运行过程中遇到了Py4JJavaError和JAVA_HOME未设置的问题,并通过导入findspark初始化和设置环境变量解决了这些问题。文章还讨论了groupByKey和reduceByKey的区别。
13 1
|
18天前
|
分布式计算 Hadoop 大数据
大数据体系知识学习(一):PySpark和Hadoop环境的搭建与测试
这篇文章是关于大数据体系知识学习的,主要介绍了Apache Spark的基本概念、特点、组件,以及如何安装配置Java、PySpark和Hadoop环境。文章还提供了详细的安装步骤和测试代码,帮助读者搭建和测试大数据环境。
34 1
|
21天前
|
分布式计算 监控 大数据
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
大数据-148 Apache Kudu 从 Flink 下沉数据到 Kudu
45 1
|
19天前
|
消息中间件 分布式计算 Kafka
大数据平台的毕业设计02:Spark与实时计算
大数据平台的毕业设计02:Spark与实时计算
|
21天前
|
SQL 运维 大数据
大数据实时计算产品的对比测评
在使用多种Flink实时计算产品后,我发现Flink凭借其流批一体的优势,在实时数据处理领域表现出色。它不仅支持复杂的窗口机制与事件时间处理,还具备高效的数据吞吐能力和精准的状态管理,确保数据处理既快又准。此外,Flink提供了多样化的编程接口和运维工具,简化了开发流程,但在界面友好度上还有提升空间。针对企业级应用,Flink展现了高可用性和安全性,不过价格因素可能影响小型企业的采纳决策。未来可进一步优化文档和自动化调优工具,以提升用户体验。
90 0
|
21天前
|
存储 机器学习/深度学习 分布式计算
大数据技术——解锁数据的力量,引领未来趋势
【10月更文挑战第5天】大数据技术——解锁数据的力量,引领未来趋势
|
22天前
|
分布式计算 关系型数据库 MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
大数据-88 Spark 集群 案例学习 Spark Scala 案例 SuperWordCount 计算结果数据写入MySQL
44 3