嵌入式实践教程--Linux性能优化实战之CPU知识基础篇

简介: 嵌入式实践教程--Linux性能优化实战之CPU知识基础篇

一、平均负载



1、基础知识


$ uptime
02:34:03 up 2 days, 20:14,  1 user,  load average: 0.63, 0.83, 0.88


0.63、0.83,、0.88:过去1、5、15分钟的平均负载


简单来说,平均负载是指单位时间内,系统处于可运行状态和不可中断状态的平均进程数,也就是平均活跃进程数,它和 CPU 使用率并没有直接关系。可运行状态的进程,是指正在使用 CPU 或者正在等待 CPU 的进程,也就是我们常用 ps 命令看到的,处于 R 状态(Running 或 Runnable)的进程。不可中断状态的进程则是正处于内核态关键流程中的进程,并且这些流程是不可打断的,比如最常见的是等待硬件设备的 I/O 响应,也就是我们在 ps 命令中看到的 D 状态(Uninterruptible Sleep,也称为 Disk Sleep)的进程。


2、CPU使用率


平均负载是指单位时间内,处于可运行状态和不可中断状态的进程数。所以,它不仅包括了正在使用 CPU 的进程,还包括等待 CPU 和等待 I/O 的进程。而 CPU 使用率,是单位时间内 CPU 繁忙情况的统计,跟平均负载并不一定完全对应。


3、平均负载案例分析


预先安装 stress 和 sysstat 包,如 apt install stress sysstat


(1)模拟CPU密集型


第一个终端输入stress --cpu 1 --timeout 600用于模拟CPU满载的场景,在第二个终端输入watch -d uptime,可以看到平均负载的动态变化。


image.png


在第三个终端输入mpstat -P ALL 5


image.png

image.png


(2)模拟IO密集型


第一个终端输入stress -i 1 --timeout 600 ,第二个终端输入watch -d uptime,第三个终端输入mpstat -P ALL 5 1,再输入pidstat -u 5 1查看导致的进程


-i 表示IO模拟


二、CPU上下文切换



在每个任务运行前,CPU 都需要知道任务从哪里加载、又从哪里开始运行,也就是说,需要系统事先帮它设置好 CPU 寄存器和程序计数器(Program Counter,PC)。CPU 寄存器,是 CPU 内置的容量小、但速度极快的内存。而程序计数器,则是用来存储 CPU 正在执行的指令位置、或者即将执行的下一条指令位置。它们都是 CPU 在运行任何任务前,必须的依赖环境,因此也被叫做 CPU 上下文CPU 上下文切换,就是先把前一个任务的 CPU 上下文(也就是 CPU 寄存器和程序计数器)保存起来,然后加载新任务的上下文到这些寄存器和程序计数器,最后再跳转到程序计数器所指的新位置,运行新任务。


根据任务的不同,CPU 的上下文切换就可以分为几个不同的场景,也就是进程上下文切换、线程上下文切换以及中断上下文切换


image.png


1、进程上下文切换


进程既可以在用户空间运行,又可以在内核空间中运行。进程在用户空间运行时,被称为进程的用户态,而陷入内核空间的时候,被称为进程的内核态。


从用户态到内核态的转变,需要通过系统调用来完成


image.png


Linux 通过 TLB(Translation Lookaside Buffer)来管理虚拟内存到物理内存的映射关系。当虚拟内存更新后,TLB 也需要刷新,内存的访问也会随之变慢。特别是在多处理器系统上,缓存是被多个处理器共享的,刷新缓存不仅会影响当前处理器的进程,还会影响共享缓存的其他处理器的进程


2、 线程上下文切换


说完了进程的上下文切换,我们再来看看线程相关的问题。线程与进程最大的区别在于,线程是调度的基本单位,而进程则是资源拥有的基本单位。说白了,所谓内核中的任务调度,实际上的调度对象是线程;而进程只是给线程提供了虚拟内存、全局变量等资源。所以,对于线程和进程,我们可以这么理解:当进程只有一个线程时,可以认为进程就等于线程。当进程拥有多个线程时,这些线程会共享相同的虚拟内存和全局变量等资源。这些资源在上下文切换时是不需要修改的。另外,线程也有自己的私有数据,比如栈和寄存器等,这些在上下文切换时也是需要保存的。这么一来,线程的上下文切换其实就可以分为两种情况:第一种, 前后两个线程属于不同进程。此时,因为资源不共享,所以切换过程就跟进程上下文切换是一样。第二种,前后两个线程属于同一个进程。此时,因为虚拟内存是共享的,所以在切换时,虚拟内存这些资源就保持不动,只需要切换线程的私有数据、寄存器等不共享的数据。到这里你应该也发现了,虽然同为上下文切换,但同进程内的线程切换,要比多进程间的切换消耗更少的资源,而这,也正是多线程代替多进程的一个优势。


3、中断上下文切换


除了前面两种上下文切换,还有一个场景也会切换 CPU 上下文,那就是中断。为了快速响应硬件的事件,中断处理会打断进程的正常调度和执行,转而调用中断处理程序,响应设备事件。而在打断其他进程时,就需要将进程当前的状态保存下来,这样在中断结束后,进程仍然可以从原来的状态恢复运行。跟进程上下文不同,中断上下文切换并不涉及到进程的用户态。所以,即便中断过程打断了一个正处在用户态的进程,也不需要保存和恢复这个进程的虚拟内存、全局变量等用户态资源。中断上下文,其实只包括内核态中断服务程序执行所必需的状态,包括 CPU 寄存器、内核堆栈、硬件中断参数等。对同一个 CPU 来说,中断处理比进程拥有更高的优先级,所以中断上下文切换并不会与进程上下文切换同时发生。同样道理,由于中断会打断正常进程的调度和执行,所以大部分中断处理程序都短小精悍,以便尽可能快的执行结束。另外,跟进程上下文切换一样,中断上下文切换也需要消耗 CPU,切换次数过多也会耗费大量的 CPU,甚至严重降低系统的整体性能。所以,当你发现中断次数过多时,就需要注意去排查它是否会给你的系统带来严重的性能问题。


4、如何查看上下文切换

vmstat 5

image.png


cs(context switch)是每秒上下文切换的次数。in(interrupt)则是每秒中断的次数。r(Running or Runnable)是就绪队列的长度,也就是正在运行和等待 CPU 的进程数。b(Blocked)则是处于不可中断睡眠状态的进程数。


vmstat 只给出了系统总体的上下文切换情况,要想查看每个进程的详细情况,就需要使用我们前面提到过的 pidstat 了。给它加上 -w 选项,你就可以查看每个进程上下文切换的情况了。


image.png


cswch ,表示每秒自愿上下文切换(voluntary context switches)的次数,

nvcswch ,表示每秒非自愿上下文切换(non voluntary context switches)的次数。


所谓自愿上下文切换,是指进程无法获取所需资源,导致的上下文切换。比如说, I/O、内存等系统资源不足时,就会发生自愿上下文切换。


而非自愿上下文切换,则是指进程由于时间片已到等原因,被系统强制调度,进而发生的上下文切换。比如说,大量进程都在争抢 CPU 时,就容易发生非自愿上下文切换。


5、上下文切换模拟


sysbench --threads=10 --max-time=300 threads run


image.pngimage.png


如图


1、cs列的上下文切换次数由几千骤升到63W次

2、r列就绪列的长度达到了11 超过了本机8个核心,因此一定会造成CPU的竞争

3、us和sy这两个CPU使用率的和接近80%,几乎都被内核所占用

4、in列中断高达6000多次,说明CPU的中断处理是一个问题。


image.pngimage.pngimage.png


pidstat 的输出可以发现,CPU 使用率的升高果然是 sysbench 导致的,它的 CPU 使用率已经达到了 100%。但上下文切换则是来自其他进程,包括非自愿上下文切换频率最高的 pidstat ,以及自愿上下文切换频率最高的内核线程 kworker 和 sshd。


发现了一个怪异的事儿:pidstat 输出的上下文切换次数,加起来也就几百,比 vmstat 的 139 万明显小了太多。这是怎么回事呢?


pidstat -wt 1

image.png


sysbench 进程(也就是主线程)的上下文切换次数看起来并不多,但它的子线程的上下文切换次数却有很多。看来,上下文切换罪魁祸首,还是过多的 sysbench 线程。怎样才能知道中断发生的类型呢?


没错,那就是从 /proc/interrupts 这个只读文件中读取。/proc 实际上是 Linux 的一个虚拟文件系统,用于内核空间与用户空间之间的通信。/proc/interrupts 就是这种通信机制的一部分,提供了一个只读的中断使用情况。


watch -d cat /proc/interrupts


image.png


可以发现,变化速度最快的是重调度中断(RES),这个中断类型表示,唤醒空闲状态的 CPU 来调度新的任务运行。这是**多处理器系统(SMP)**中,调度器用来分散任务到不同 CPU 的机制,通常也被称为处理器间中断(Inter-Processor Interrupts,IPI)。


自愿上下文切换变多了,说明进程都在等待资源,有可能发生了 I/O 等其他问题;非自愿上下文切换变多了,说明进程都在被强制调度,也就是都在争抢 CPU,说明 CPU 的确成了瓶颈;中断次数变多了,说明 CPU 被中断处理程序占用,还需要通过查看 /proc/interrupts 文件来分析具体的中断类型。

相关文章
|
11天前
|
消息中间件 Java Kafka
【手把手教你Linux环境下快速搭建Kafka集群】内含脚本分发教程,实现一键部署多个Kafka节点
本文介绍了Kafka集群的搭建过程,涵盖从虚拟机安装到集群测试的详细步骤。首先规划了集群架构,包括三台Kafka Broker节点,并说明了分布式环境下的服务进程配置。接着,通过VMware导入模板机并克隆出三台虚拟机(kafka-broker1、kafka-broker2、kafka-broker3),分别设置IP地址和主机名。随后,依次安装JDK、ZooKeeper和Kafka,并配置相应的环境变量与启动脚本,确保各组件能正常运行。最后,通过编写启停脚本简化集群的操作流程,并对集群进行测试,验证其功能完整性。整个过程强调了自动化脚本的应用,提高了部署效率。
【手把手教你Linux环境下快速搭建Kafka集群】内含脚本分发教程,实现一键部署多个Kafka节点
|
3天前
|
Ubuntu Linux 开发者
Ubuntu20.04搭建嵌入式linux网络加载内核、设备树和根文件系统
使用上述U-Boot命令配置并启动嵌入式设备。如果配置正确,设备将通过TFTP加载内核和设备树,并通过NFS挂载根文件系统。
31 15
|
17天前
|
存储 监控 Linux
嵌入式Linux系统编程 — 5.3 times、clock函数获取进程时间
在嵌入式Linux系统编程中,`times`和 `clock`函数是获取进程时间的两个重要工具。`times`函数提供了更详细的进程和子进程时间信息,而 `clock`函数则提供了更简单的处理器时间获取方法。根据具体需求选择合适的函数,可以更有效地进行性能分析和资源管理。通过本文的介绍,希望能帮助您更好地理解和使用这两个函数,提高嵌入式系统编程的效率和效果。
83 13
|
30天前
|
监控 算法 Linux
Linux内核锁机制深度剖析与实践优化####
本文作为一篇技术性文章,深入探讨了Linux操作系统内核中锁机制的工作原理、类型及其在并发控制中的应用,旨在为开发者提供关于如何有效利用这些工具来提升系统性能和稳定性的见解。不同于常规摘要的概述性质,本文将直接通过具体案例分析,展示在不同场景下选择合适的锁策略对于解决竞争条件、死锁问题的重要性,以及如何根据实际需求调整锁的粒度以达到最佳效果,为读者呈现一份实用性强的实践指南。 ####
|
30天前
|
缓存 监控 网络协议
Linux操作系统的内核优化与实践####
本文旨在探讨Linux操作系统内核的优化策略与实际应用案例,深入分析内核参数调优、编译选项配置及实时性能监控的方法。通过具体实例讲解如何根据不同应用场景调整内核设置,以提升系统性能和稳定性,为系统管理员和技术爱好者提供实用的优化指南。 ####
|
18天前
|
Ubuntu Linux C++
Win10系统上直接使用linux子系统教程(仅需五步!超简单,快速上手)
本文介绍了如何在Windows 10上安装并使用Linux子系统。首先,通过应用商店安装Windows Terminal和Linux系统(如Ubuntu)。接着,在控制面板中启用“适用于Linux的Windows子系统”并重启电脑。最后,在Windows Terminal中选择安装的Linux系统即可开始使用。文中还提供了注意事项和进一步配置的链接。
40 0
|
2月前
|
Linux Python
Linux 中某个目录中的文件数如何查看?这篇教程分分钟教会你!
在 Linux 系统中,了解目录下文件数量是常见的需求。本文介绍了四种方法:使用 `ls` 和 `wc` 组合、`find` 命令、`tree` 命令以及编程实现(如 Python)。每种方法都附有详细说明和示例,适合不同水平的用户学习和使用。掌握这些技巧,可以有效提升系统管理和日常使用的效率。
771 6
|
2月前
|
Linux Python
Linux 中某个目录中的文件数如何查看?这篇教程分分钟教会你!
在 Linux 系统中,了解目录下的文件数量是常见的需求。本文介绍了多种方法,包括使用 `ls` 和 `wc` 命令组合、`find` 命令、`tree` 命令以及编程方式(如 Python)。无论你是新手还是有经验的用户,都能找到适合自己的方法。掌握这些技巧将提高你在 Linux 系统中的操作效率。
72 4
|
2月前
|
关系型数据库 MySQL Linux
Linux环境下MySQL数据库自动定时备份实践
数据库备份是确保数据安全的重要措施。在Linux环境下,实现MySQL数据库的自动定时备份可以通过多种方式完成。本文将介绍如何使用`cron`定时任务和`mysqldump`工具来实现MySQL数据库的每日自动备份。
137 3
|
Linux 网络安全 数据安全/隐私保护