梯度下降算法主要通过哪两个控制因子实现最优参数选择?这两个因子分别起到什么作用?为什么计算损失函数最优值采用梯度下降算法而不是直接对损失函数求导数等于0时的最优解?如何判断梯度下降算法是否正确工作?

简介: 梯度下降算法主要通过哪两个控制因子实现最优参数选择?这两个因子分别起到什么作用?为什么计算损失函数最优值采用梯度下降算法而不是直接对损失函数求导数等于0时的最优解?如何判断梯度下降算法是否正确工作?梯度下降算法有两个重要的控制因子:一个是步长,由学习率控制;一个是方向,由梯度指定。1.在梯度下降算法中,步长决定了每一次迭代过程中,会往梯度下降的方向移动的距离。试想一下,如果步长很大,算法会在局部最优点附近来回跳动,不会收敛(如下图);但如果步长太短,算法每步的移动距离很短,就会导致算法收敛速度很慢。2

(1)梯度下降算法主要通过哪两个控制因子实现最优参数选择?这两个因子分别起到什么作用?

答:梯度下降算法有两个重要的控制因子:一个是步长,由学习率控制;一个是方向,由梯度指定。

1.在梯度下降算法中,步长决定了每一次迭代过程中,会往梯度下降的方向移动的距离。试想一下,如果步长很大,算法会在局部最优点附近来回跳动,不会收敛(如下图);但如果步长太短,算法每步的移动距离很短,就会导致算法收敛速度很慢。

2.梯度的意义从几何意义上讲,就是函数变化增加最快的地方。具体来说,对于函数f(x,y),在点(x0,y0),沿着梯度向量的方向就是(∂f/∂x0, ∂f/∂y0)T的方向是f(x,y)增加最快的地方。或者说,沿着梯度向量的方向,更加容易找到函数的最大值。反过来说,沿着梯度向量相反的方向,也就是 -(∂f/∂x0, ∂f/∂y0)T的方向,梯度减少最快,也就是更加容易找到函数的最小值。


(2)为什么计算损失函数最优值采用梯度下降算法而不是直接对损失函数求导数等于0时的最优解?

答:多维函数偏导为0并非是局部极值,偏导为零是该点为极值的必要不充分条件,所以极值为0不一定是极值,你求偏导为0是没有用的,求出来也未必是极值点。不管是直接令偏导等于0还是使用梯度下降,都无法解决损失函数为非凸函数时陷入局部最优的问题。之所以使用梯度下降而不直接令偏导等于0,是因为神经网络的损失函数大多没有解析解,就是说你无法显式地表示函数的偏导,所以只能通过数值求解的方法迭代地找到最优解(或者局部最优解)。


(3)如何判断梯度下降算法是否正确工作?

答:可以绘制一个α——J(θ)曲线图,通过图像判断是否正确工作。

对于一个足够小的学习率α,每次迭代后损失函数J(θ)都会下降

如果α过小,梯度下降的收敛速度很慢

如果α太大,损失函数可能不会在每次迭代都下降,甚至可能不收敛

选择使得J(θ)曲线快速下降的α值

相关文章
|
1月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
59 0
|
1月前
|
JSON 算法 数据可视化
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
这篇文章是关于如何通过算法接口返回的目标检测结果来计算性能指标的笔记。它涵盖了任务描述、指标分析(包括TP、FP、FN、TN、精准率和召回率),接口处理,数据集处理,以及如何使用实用工具进行文件操作和数据可视化。文章还提供了一些Python代码示例,用于处理图像文件、转换数据格式以及计算目标检测的性能指标。
57 0
测试专项笔记(一): 通过算法能力接口返回的检测结果完成相关指标的计算(目标检测)
|
1月前
|
算法 决策智能
基于禁忌搜索算法的VRP问题求解matlab仿真,带GUI界面,可设置参数
该程序基于禁忌搜索算法求解车辆路径问题(VRP),使用MATLAB2022a版本实现,并带有GUI界面。用户可通过界面设置参数并查看结果。禁忌搜索算法通过迭代改进当前解,并利用记忆机制避免陷入局部最优。程序包含初始化、定义邻域结构、设置禁忌列表等步骤,最终输出最优路径和相关数据图表。
|
1月前
|
算法
基于最小二乘递推算法的系统参数辨识matlab仿真
该程序基于最小二乘递推(RLS)算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计并计算误差及收敛曲线,对比不同信噪比下的估计误差。在MATLAB 2022a环境下运行,结果显示了四组误差曲线。RLS算法适用于实时、连续数据流中的动态参数辨识,通过递推方式快速调整参数估计,保持较低计算复杂度。
|
1月前
|
机器学习/深度学习 算法 大数据
机器学习入门:梯度下降算法(下)
机器学习入门:梯度下降算法(下)
|
2月前
|
机器学习/深度学习 算法
深度学习中的优化算法:从梯度下降到Adam
本文深入探讨了深度学习中的核心——优化算法,重点分析了梯度下降及其多种变体。通过比较梯度下降、动量方法、AdaGrad、RMSProp以及Adam等算法,揭示了它们如何更高效地找到损失函数的最小值。此外,文章还讨论了不同优化算法在实际模型训练中的表现和选择依据,为深度学习实践提供了宝贵的指导。
90 7
|
1月前
|
机器学习/深度学习 算法
机器学习入门:梯度下降算法(上)
机器学习入门:梯度下降算法(上)
|
2月前
|
算法 C++
如何精确计算出一个算法的CPU运行时间?
如何精确计算出一个算法的CPU运行时间?
|
2月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
2月前
|
算法
基于极大似然算法的系统参数辨识matlab仿真
本程序基于极大似然算法实现系统参数辨识,对参数a1、b1、a2、b2进行估计,并计算估计误差及收敛曲线,对比不同信噪比下的误差表现。在MATLAB2022a版本中运行,展示了参数估计值及其误差曲线。极大似然估计方法通过最大化观测数据的似然函数来估计未知参数,适用于多种系统模型。