聊聊MySQL架构演进:从主从复制到分库分表

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 背景业务飞速发展导致数据规模急速膨胀,单机的数据库已经无法满足互联网业务的发展。传统的将数据集中存储单一数据结节的方案,在容量、性能、可用性和可维护性方面已经难以满足互联网海量数据的场景。从容量方面考虑,单机数据库容量有限,难以扩容。从性能方面来说,由于关系型数据库大多数采用B+树类型索引,在数据量超过一定的阈值后,索引的深度增加导致对磁盘的随机IO次数增加,进而导致性能问题。

背景

业务飞速发展导致数据规模急速膨胀,单机的数据库已经无法满足互联网业务的发展。

传统的将数据集中存储单一数据结节的方案,在容量、性能、可用性和可维护性方面已经难以满足互联网海量数据的场景。

从容量方面考虑,单机数据库容量有限,难以扩容。

从性能方面来说,由于关系型数据库大多数采用B+树类型索引,在数据量超过一定的阈值后,索引的深度增加导致对磁盘的随机IO次数增加,进而导致性能问题。

从可用性方面来说,服务通常设计成无状态的,这必然导致系统的存储压力都集中在数据库层面,而单一的数据节点,或者简单的主从架构,已经越来越难以承担。

从运维角度来看,当数据都集中在一个节点上时,数据备份和恢复的时间成本也随之数据量上升变得不可控。同时数据丢失导致影响的范围也会被放大。

网络异常,图片无法展示
|

主从复制

  • 主库将事务操作(除了查询以外的操作)记录到binlog
  • 从库通过relay log同步数据,实现数据的同步

网络异常,图片无法展示
|

binlog日志格式

  • row 记录数据库操作详细记录,包括上线文信息等,文件较大。
  • statement 记录事务相关的SQL文件。
  • mixed 混合式, 基于row和statement两种文件格式。

异步复制

2000年,MySQL3.23.15版本引入复制功能,采用异步复制的方式,当网络或者机器故障,会导致数据不一致。

网络异常,图片无法展示
|

半同步复制

2010年, MySQL 5.5版本引入半同步复制, 半同步复制是指只要一个salve节点返回ack,master节点就可以提交事务了,保证数据库至少有一个节点完成了数据的同步。

网络异常,图片无法展示
|

组复制

2016年,MysQL在5.7.17中引入InnoDB Group Replication,该方案基于paxos协议实现组内复制,保证数据一致性,paxos协议核心在于过半选举。

网络异常,图片无法展示
|

主从复制的问题

  • 主从复制延迟,导致"写完读"数据不一致问题。从库读取失败,再去主库执行一遍SQL,存在性能问题。业务层保证系统核心功能可用,将核心功能的CRUD操作都路由到主库,非核心业务功能即使存在短暂数据不一致也影响不大。
  • 路由问题,需要业务层根据SQL路由到不同的数据库,路由到SLAVE节点时,还需要保证系统负载均衡。业务层通过框架(如sharding-jdbc)或者手动实现,对业务的侵入性较大,已存在的旧系统改造不友好。通过数据库中间件实现(如mycat、sharding-proxy),需要部署一个中间件(中间件实现SQL标准),规则配置在中间件,执行过程中会多一次网络转发。
  • 不能保证系统高可用通过一系列高可用的解决方案保证数据库高可用

数据库高可用

什么是高可用?

高可用意味着,更少的服务不可用的时间,一般用SLA(服务级别协议)衡量。

1年 = 365天 = 8760小时

99 = 8760 * 1% = 8760 * 0.01 = 87.6小时

99.9 = 8760 * 0.1% = 8760 * 0.001 = 8.76小时

99.99 = 8760 * 0.0001 = 0.876小时 = 0.876 * 60 = 52.6分钟

99.999 = 8760 * 0.00001 = 0.0876小时 = 0.0876 * 60 = 5.26分钟

为什么要做高可用?

通过故障转移,提供failover的能力,加上业务侧连接池的心跳重试,实现断线重连,业务不间断,降低RTO(Recovery Time Objective,复原时间目标)和RPO(Recovery Point Objective,复原点目标)。

  • 容灾恢复:冷备和热备,冷备和热备的区别在于运行期间是否提供服务。
  • 对于主从来说,简单的来说就是Master节点挂了,某一个从节点,自动切换成主。
  • 从集群来看,即便是个别节点挂了,能正常对外提供服务。

常见的策略:

  • 多实例部署
  • 跨机房部署
  • 两地三中心容灾高可用方案等。

手动切换

即如果主节点宕机,手动将某个从节点修改成主节点。

存在的问题:

  • 可能数据不一致
  • 需要人工干预
  • 代码和配置的侵入性,需要配置其他节点,修改应用数据源的配置。

MHA

MHA全称叫做MySQL Master High Availability,是由Facebook工程师 Yoshinori Matsunobu开发的一款MySQL高可用框架,基于Perl语言开发,一般能在30秒内实现主从切换,切换时通过SSH复制主节点的日志信息。

MHA负责MySQL主库的高可用,当主库发生故障时,MHA会选择一个数量最接近原主库的候选节点作为新的主节点,并且补齐和之前宕机的Master差异的Binlog。数据补齐后,即将写VIP漂移到新的主库上。具体的架构图如下:

网络异常,图片无法展示
|

优点

  • 可以进行根据具体的故障实现自动检测和故障转移
  • 扩展性好,可以任意的扩展数据节点数量

缺点:

  • 极限情况下,可能会发生脑裂现象,出现多个Master。
  • 需要配置SSH信息。
  • 至少需要三台。

MGR

MGR是数据库支持的,只需要配置插件即可,如果主节点挂掉,将自动选择某个从改为主。无需人工干预,并且基于组复制(paxos算法),保证数据一致性。

网络异常,图片无法展示
|

MGR的特点

  • 高一致性,基于分布式Paxos协议实现复制,保证数据一致性。
  • 高容错性,自动检测机制,只要大多数节点都宕机的情况下,数据库可以继续工作,内置防爆裂保护机制。
  • 高可扩展性,加入新节点后,自动实现增量同步,直到与其他节点数据一致。
  • 高灵活性,提供了单主和多主模式,单主模式支持主节点宕机,自动选主,多主模式支持多节点写入。

MySQL InnoDb Cluster,一个完整的数据库高可用解决框架,由多个组件组成

  • MySQL Group Replication,提供DB的扩展,故障迁移
  • MySQL Router,轻量级中间件,提供应用程序连接目标的故障转移。
  • MySQL shell,新的MySQL客户端,多种接口模式,可以设置群组复制和Router。

网络异常,图片无法展示
|

Orchestrator

一款MySQL高可用和复制拓扑管理工具,支持复制拓扑结构的调整,自动故障迁移和手动切换的功能等,直接拖拽UI,就可以实现主从切换。

分库分表

分库分表通常是指垂直分库和水平分表,对于垂直分表其实就是将宽表拆分成小表,没有太多的技术挑战,这里侧重讲讲垂直分库和水平分表。

垂直分库

垂直分库是指将数据库进行纵向切分,通常按照业务的维度进行划分。

如典型的微服务的架构,将系统按照业务维度垂直拆分,划分成多个服务。如一个电商网站可以拆分成:订单、商品、会员、支付等服务。

网络异常,图片无法展示
|

垂直分库后业务更加单纯,职责单一,同时可以解决部分数据库容量问题,但是同时也引入了新的技术复杂度,如下:

  • 分布式事务,跨数据库的事务操作需要分布式事务支持,否则系统将会面临数据不一致的问题。方案一,采用XA事务,XA事务是数据库本身支持规范,具备强一致性的特征,但是性能比较差,对于追求高性能的场景不适合使用XA事务。方案二,采用柔性事务,柔性事务是指,数据库保证局部事务,全局事务实现由业务层实现(如通过调度补偿,重试补偿,人工介入等),柔性事务常见的解决方案有:TCC、利用消息队列实现事务。
  • join问题,分库后,表分散到不同的数据库,无法直接使用SQL进行JOIN操作,需要业务层自己实现聚合操作,增加了开发成本。

水平分表

水平分表是指,将表按照某种规则分成多张表,拆分后的表结构和拆分前完全一致,但是数据分散到多张表中,也可以成为数据分片。

网络异常,图片无法展示
|

通过水平分表,解决了单表的容量和性能问题。但同时,水平分表后,引入了新的技术复杂度,主要有以下几点:

  • 路由问题,当业务层通过SQL对数据库进行DML操作时,到底该查询哪张表呢?方案一:范围路由。根据表中某一列(分片键)的取值范围进行分表,如根据创建时间将主表分成多张表,每个月的数据单独存储在一个表中。范围路由可能出现数据分配不均匀的现象,但是表数量易于扩展。方案二:哈希路由。根据表中某一列与分片数量取模运算(field_value % table_num)。hash路由和范围路由相反。表数量扩展时都会导致数据重新分布,但是数据分布较为均匀。
  • join问题,由于分表后,数据分散到多个表中,JOIN的条件语句中如果没有分片键,那么需要将全部的分片表都JOIN一遍,这种操作会存在性能问题。
  • count问题,分表后,如果需要统计表记录总和,需要遍历所有的表,然后再将结果进行汇总,可以通过一张单独的汇总表来解决,但这种解决方案需要每次insert或者delete的时候就需要更新汇总表,如果有一次没有更新,就会导致数据不一致。
  • order by问题,分表后,如果需要进行排序,需要遍历所有的表,然后在代码层进行重新排序,这个操作一看就会存在性能问题。

分库分表解决方案

  • 业务代码层解决,可以通过SQL手动处理路由,但是和业务的耦合很严重,不易于维护。通常采用集成jar包的方式进行解决,如集成成熟的开源项目:sharding-jdbc。
  • 数据库中间件,数据库中间件实现了对应数据库的SQL标准,路由规则配置在数据库中间件,业务代码操作数据库中间件和直接操作数据库没有任何区别。

总结

从单节点数据库到主从复制,再到数据库高可用,再到分库分表,很好的解决了数据的性能、容量、高可用、运维性等问题,但是会带来分布式事务、复杂SQL难以操作、SQL路由等问题。

架构设计应该遵循:"简单性"、"合适性"、"演化性"的原则,符合当前的业务发展,所以系统设计没有必要一上来就考虑分库分表,而应该是数据量达到一定的量,出现性能瓶颈的时候再对系统进行改造和优化。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
运维 Cloud Native 架构师
【组装式架构设计】架构演进简史
一步一步从单体到 SOA,从微服务再到云原生的科普后端架构演进史
28046 12
【组装式架构设计】架构演进简史
|
微服务
微服务架构演进图
微服务架构演进图
451 0
微服务架构演进图
|
双11
《九年双11云化架构演进和升级,打造更加完美的双11》电子版地址
九年双11云化架构演进和升级,打造更加完美的双11
80 2
《九年双11云化架构演进和升级,打造更加完美的双11》电子版地址
|
存储 运维 前端开发
浅谈架构演进
绪论设计原则千万条,高聚松耦第一条,架构设计不规范,开发运维两行泪!1.单体架构在单体架构之前的上古时代,所有的东西(应用程序,文件系统,数据库,web)都被部署并运行在一台服务器上,随着业务逻辑的逐渐复杂,数据存储开始变的低效,整个系统全部揉杂在一起,相互影响,耦合度极高。随着软件规模的扩大,单台服务器已经不能满足软件运行的需求,开始出现了软件的单体架构。单体架构的风格就是简单意味着一个程序中包
259 0
浅谈架构演进
|
存储 设计模式 负载均衡
Android 的架构演进
在 Android 需要哪些架构手段一文中,我们讲述了一些我们需要了解学习的架构手段,我们已经学习到了一些常用的手段。那么对于一个项目、一个软件产品来说,我们的架构是如何跟随软件的生命周期来演进的呢?
Android 的架构演进
|
存储 缓存 Cloud Native
|
弹性计算 架构师 Serverless
serverless 入门与实践 | 学习笔记5: 华为终端云从微服务到 Serverless 的架构演进实践
serverless 入门与实践 | 学习笔记5: 华为终端云从微服务到 Serverless 的架构演进实践
279 0
serverless 入门与实践 | 学习笔记5: 华为终端云从微服务到 Serverless 的架构演进实践
|
Cloud Native

推荐镜像

更多