机器学习-基本概念-线型回归

简介: 机器学习-基本概念-线型回归

转载谷歌教程

https://developers.google.cn/machine-learning/crash-course/descending-into-ml/linear-regression

人们早就知晓,相比凉爽的天气,蟋蟀在较为炎热的天气里鸣叫更为频繁。数十年来,专业和业余昆虫学者已将每分钟的鸣叫声和温度方面的数据编入目录。Ruth 阿姨将她喜爱的蟋蟀数据库作为生日礼物送给您,并邀请您自己利用该数据库训练一个模型,从而预测鸣叫声与温度的关系。首先建议您将数据绘制成图表,了解下数据的分布情况:

image.png

图 1. 每分钟的鸣叫声与温度(摄氏度)的关系。

毫无疑问,此曲线图表明温度随着鸣叫声次数的增加而上升。鸣叫声与温度之间的关系是线性关系吗?是的,您可以绘制一条直线来近似地表示这种关系,如下所示:

image.png

图 2. 线性关系。

事实上,虽然该直线并未精确无误地经过每个点,但针对我们拥有的数据,清楚地显示了鸣叫声与温度之间的关系。只需运用一点代数知识,您就可以将这种关系写下来,如下所示:

y=mx+b

其中:

  • y 指的是温度(以摄氏度表示),即我们试图预测的值。
  • m 指的是直线的斜率。
  • x 指的是每分钟的鸣叫声次数,即输入特征的值。
  • b 指的是 y 轴截距。

按照机器学习的惯例,您需要写一个存在细微差别的模型方程式:

y′=b+w1x1

其中:

  • y′ 指的是预测标签(理想输出值)。
  • b 指的是偏差(y 轴截距)。而在一些机器学习文档中,它称为 w0。
  • w1 指的是特征 1 的权重。权重与上文中用 m 表示的“斜率”的概念相同。
  • x1 指的是特征(已知输入项)。

要根据新的每分钟的鸣叫声值 x1 推断(预测)温度 y′,只需将 x1 值代入此模型即可。

下标(例如 w1 和 x1)预示着可以用多个特征来表示更复杂的模型。例如,具有三个特征的模型可以采用以下方程式:

y′=b+w1x1+w2x2+w3x3

目录
相关文章
|
6月前
|
机器学习/深度学习 人工智能 算法
详解机器学习概念、算法
详解机器学习概念、算法
详解机器学习概念、算法
|
1月前
|
机器学习/深度学习 自然语言处理 JavaScript
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
74 2
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
|
1月前
|
机器学习/深度学习 传感器 算法
机器学习入门(一):机器学习分类 | 监督学习 强化学习概念
机器学习入门(一):机器学习分类 | 监督学习 强化学习概念
|
6月前
|
机器学习/深度学习 自然语言处理 算法
|
3月前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】机器学习的基本概念、算法的工作原理、实际应用案例
机器学习是人工智能的一个分支,它使计算机能够在没有明确编程的情况下从数据中学习并改进其性能。机器学习的目标是让计算机自动学习模式和规律,从而能够对未知数据做出预测或决策。
96 2
|
3月前
|
机器学习/深度学习 人工智能 算法
【人工智能】机器学习、分类问题和逻辑回归的基本概念、步骤、特点以及多分类问题的处理方法
机器学习是人工智能的一个核心分支,它专注于开发算法,使计算机系统能够自动地从数据中学习并改进其性能,而无需进行明确的编程。这些算法能够识别数据中的模式,并利用这些模式来做出预测或决策。机器学习的主要应用领域包括自然语言处理、计算机视觉、推荐系统、金融预测、医疗诊断等。
67 1
|
3月前
|
机器学习/深度学习 算法
【机器学习】解释对偶的概念及SVM中的对偶算法?(面试回答)
解释了对偶的概念,指出对偶性在优化问题中的重要性,尤其是在强对偶性成立时可以提供主问题的最优下界,并且详细阐述了支持向量机(SVM)中对偶算法的应用,包括如何将原始的最大间隔优化问题转换为对偶问题来求解。
86 2
|
3月前
|
机器学习/深度学习
【机器学习】准确率、精确率、召回率、误报率、漏报率概念及公式
机器学习评估指标中的准确率、精确率、召回率、误报率和漏报率等概念,并给出了这些指标的计算公式。
648 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之深度学习算法概念
深度学习算法是一类基于人工神经网络的机器学习方法,其核心思想是通过多层次的非线性变换,从数据中学习表示层次特征,从而实现对复杂模式的建模和学习。深度学习算法在图像识别、语音识别、自然语言处理等领域取得了巨大的成功,成为人工智能领域的重要技术之一。
90 3
|
3月前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】凸集、凸函数、凸优化、凸优化问题、非凸优化问题概念详解
本文解释了凸集、凸函数、凸优化以及非凸优化的概念,并探讨了它们在机器学习中的应用,包括如何将非凸问题转化为凸问题的方法和技术。
263 0
下一篇
无影云桌面