Python-Tensorflow-二次代价函数、交叉熵、对数似然代价函数、交叉熵应用

简介: Python-Tensorflow-二次代价函数、交叉熵、对数似然代价函数、交叉熵应用

一、二次代价函数


y代表实际值,其实就是label。y-a即误差,误差的平方和除以样本数。

第二个公式是表示只有一个样本时的代价函数。σ()是激活函数,输出前需要经过一个激活函数。W是权值,X是上一层的信号值,b是偏置值,最终得到z,z是信号的总和。

第一个式子:对w权值求偏导;(复合函数求偏导)

第二个式子:对b偏置值求偏导。

其中,z表示神经元的输入,sigma表示激活函数。w和b的梯度跟激活函数的梯度成正比,w和b的大小天正得越快,训练收敛得越快。

sigmoid函数即S形函数,值域为[0,1]。在B点出现梯度消失。

假设我们的目标是收敛到1,A点的值为0.82离目标比较远,梯度比较大,权值调整比较大。B的值为0.98离目标比较近,梯度比较小,权值调整比较小。调整方案合理。

假设我们的目标是收敛到0,A点的值为0.82离目标比较远,梯度比较大,权值调整比较大,调整方案合理。B的值为0.98,梯度比较小,权值调整比较小,调整方案不合理。

二、交叉熵代价函数


策略更加合理,故相比于二次代价函数,模型收敛更快。

三、对数似然代价函数


与softmax函数搭配使用。softmax函数是将数值转化为概率。

策略更加合理,故相比于二次代价函数,模型收敛更快。

四、优化代价函数的实战训练


这里仅仅将代价函数进行转换,使用softmax较适用的交叉熵代价函数

import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import input_data
#读取mnist数据集 如果没有则会下载
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
#每个批次的大小
batch_size = 100
#计算一共有多少批次
n_batch = mnist.train.num_examples // batch_size
#定义两个占位符
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
#创建简单的神经网络
#群值
W = tf.Variable(tf.zeros([784,10]))
#偏置值
b = tf.Variable(tf.zeros([10]))
#预测值
prediction = tf.nn.softmax(tf.matmul(x,W)+b)
#二次代价函数
#loss = tf.reduce_mean(tf.square(y-prediction))
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y,logits=prediction))
#使用梯度下降法
train_step = tf.train.GradientDescentOptimizer(0.3).minimize(loss)
#初始化变量
init = tf.global_variables_initializer()
#预测数据与样本比较,如果相等就返回1 求出标签
#结果存放在布尔型列表中
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))#argmax返回一维张量中最大的值所在的位置
#求准确率
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
#进行训练
with tf.Session() as sess:
    sess.run(init)
    for i in range(21):#周期
        for batch in range(n_batch):#批次
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
        acc = sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print("周期 :"+ str(i) + "准确率:" +  str(acc))

运行结果

周期 :0准确率:0.8839
周期 :1准确率:0.9017
周期 :2准确率:0.9059
周期 :3准确率:0.9107
周期 :4准确率:0.9127
周期 :5准确率:0.915
周期 :6准确率:0.9155
周期 :7准确率:0.919
周期 :8准确率:0.9178
周期 :9准确率:0.9196
周期 :10准确率:0.9204
周期 :11准确率:0.9222
周期 :12准确率:0.9215
周期 :13准确率:0.9224
周期 :14准确率:0.9219
周期 :15准确率:0.9222
周期 :16准确率:0.9217
周期 :17准确率:0.923
周期 :18准确率:0.9236
周期 :19准确率:0.9237
周期 :20准确率:0.9249

通过对比可以看出后者的训练的速度更快,训练的准确率更高了

目录
相关文章
|
10天前
|
机器学习/深度学习 存储 数据挖掘
Python图像处理实用指南:PIL库的多样化应用
本文介绍Python中PIL库在图像处理中的多样化应用,涵盖裁剪、调整大小、旋转、模糊、锐化、亮度和对比度调整、翻转、压缩及添加滤镜等操作。通过具体代码示例,展示如何轻松实现这些功能,帮助读者掌握高效图像处理技术,适用于图片美化、数据分析及机器学习等领域。
49 20
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
2月前
|
机器学习/深度学习 Python
堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能
本文深入探讨了堆叠集成策略的原理、实现方法及Python应用。堆叠通过多层模型组合,先用不同基础模型生成预测,再用元学习器整合这些预测,提升模型性能。文章详细介绍了堆叠的实现步骤,包括数据准备、基础模型训练、新训练集构建及元学习器训练,并讨论了其优缺点。
108 3
|
2月前
|
机器学习/深度学习 算法 数据挖掘
线性回归模型的原理、实现及应用,特别是在 Python 中的实践
本文深入探讨了线性回归模型的原理、实现及应用,特别是在 Python 中的实践。线性回归假设因变量与自变量间存在线性关系,通过建立线性方程预测未知数据。文章介绍了模型的基本原理、实现步骤、Python 常用库(如 Scikit-learn 和 Statsmodels)、参数解释、优缺点及扩展应用,强调了其在数据分析中的重要性和局限性。
95 3
|
24天前
|
算法 数据处理 Python
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
Savitzky-Golay滤波器是一种基于局部多项式回归的数字滤波器,广泛应用于信号处理领域。它通过线性最小二乘法拟合低阶多项式到滑动窗口中的数据点,在降噪的同时保持信号的关键特征,如峰值和谷值。本文介绍了该滤波器的原理、实现及应用,展示了其在Python中的具体实现,并分析了不同参数对滤波效果的影响。适合需要保持信号特征的应用场景。
102 11
高精度保形滤波器Savitzky-Golay的数学原理、Python实现与工程应用
|
2月前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
148 67
|
15天前
|
Python
[oeasy]python057_如何删除print函数_dunder_builtins_系统内建模块
本文介绍了如何删除Python中的`print`函数,并探讨了系统内建模块`__builtins__`的作用。主要内容包括: 1. **回忆上次内容**:上次提到使用下划线避免命名冲突。 2. **双下划线变量**:解释了双下划线(如`__name__`、`__doc__`、`__builtins__`)是系统定义的标识符,具有特殊含义。
26 3
|
19天前
|
JSON 监控 安全
深入理解 Python 的 eval() 函数与空全局字典 {}
`eval()` 函数在 Python 中能将字符串解析为代码并执行,但伴随安全风险,尤其在处理不受信任的输入时。传递空全局字典 {} 可限制其访问内置对象,但仍存隐患。建议通过限制函数和变量、使用沙箱环境、避免复杂表达式、验证输入等提高安全性。更推荐使用 `ast.literal_eval()`、自定义解析器或 JSON 解析等替代方案,以确保代码安全性和可靠性。
28 2
|
4天前
|
存储 人工智能 Python
[oeasy]python061_如何接收输入_input函数_字符串_str_容器_ 输入输出
本文介绍了Python中如何使用`input()`函数接收用户输入。`input()`函数可以从标准输入流获取字符串,并将其赋值给变量。通过键盘输入的值可以实时赋予变量,实现动态输入。为了更好地理解其用法,文中通过实例演示了如何接收用户输入并存储在变量中,还介绍了`input()`函数的参数`prompt`,用于提供输入提示信息。最后总结了`input()`函数的核心功能及其应用场景。更多内容可参考蓝桥、GitHub和Gitee上的相关教程。
8 0
|
1月前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
57 18