一文速学-HiveSQL解析JSON数据详解+代码实战

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 一文速学-HiveSQL解析JSON数据详解+代码实战

前言


JSON文件存储格式十分常见,在各个数据库中以及业务场景都有关于该文件的处理方式。但是有时候处理JSON文件在不同的数据库处理方法也不同,掌握一些高效的函数可以大大简化我们处理JSON数据格式的效率。面对一些复杂的存储形式,例如JSON数组存储这种就必须采取一定的处理方式,下面是处理HiveSQL解析JSON数据的函数与方法。


一、JSON数据


君欲擅其器,必先练其力。我们要对JSON文件有个熟悉的认知。


JSON是一个标记符的序列。这套标记符包含六个构造字符、字符串、数字和三个字面名。


JSON是一个序列化的对象或数组。


   数据为  键 / 值 (name/value)对;

   数据由逗号(,)分隔;

   大括号保存对象(object);

   方括号保存数组(Array);

值可以是对象、数组、数字、字符串或者三个字面值(false、null、true)中的一个。值中的字面值中的英文必须使用小写。


如:


"code":"100"


对象由花括号括起来的逗号分割的成员构成,成员是字符串键和上文所述的值由逗号分割的键值对组成:


{“code”:20,"type":"mysql"}


数组是由方括号括起来的一组值构成:


"datesource":[
    {"code":"20", "type":"mysql"},
   {"code":"20", "type":"mysql"},
    {"code":"20", "type":"mysql"}
]


二、Hive解析函数


以我们经常存储的JSON文件为实例去展示操作:

{"level":"2","time":1650973942596,"type":"0"}

HiveSQL自带两个函数可以处理JSON文件,但是一次只能处理一个JSON文件。


1.get_json_object


get_json_object的基础语法格式为:


get_json_object(json_string, '$.key')


功能:解析json的字符串json_string,返回key指定的内容。如果输入的json字符串无效,那么返回NULL。这个函数每次只能返回一个数据项。

SELECT 
GET_JSON_OBJECT('{"level":"2","time":1650973942596,"type":"0"}','$.level' ) as level ;

1b3bca4cf3f04a419a9137cc87df82be.png


如果要解析JSON的所有字段可以多写几条:

SELECT 
GET_JSON_OBJECT('{"level":"2","time":1650973942596,"type":"0"}','$.level' ) as level,
GET_JSON_OBJECT('{"level":"2","time":1650973942596,"type":"0"}','$.time' ) as times,
GET_JSON_OBJECT('{"level":"2","time":1650973942596,"type":"0"}','$.type' ) as types;

ccfc775ad92b476ab0c222b6722e5235.png


2.json_tuple


为了解决get_json_object一次解析不了整个JSON文件的问题,我们就有了json_tuple这个函数,一条便能处理一条JSON数据,基础语法为:


json_tuple(json_string, k1, k2 ...)


解析json的字符串json_string,可指定多个json数据中的key,返回对应的value。如果输入的json字符串无效,那么返回NULL。

SELECT 
json_tuple('{"level":"2","time":1650973942596,"type":"0"}','level','time','type') as (level,times,types);

9de4f9f7874f4548b23cbc9f69a1c8c0.png


但是以上这两个函数都无法处理JSON数组,需要我们使用正则替换和explode函数清洗出每条独立的JSON数据才能处理。


3.explode


explode的基础语法为:


explode(Array OR Map)


功能:explode()函数接收一个array或者map类型的数据作为输入,然后将array或map里面的元素按照每行的形式输出,即将hive一列中复杂的array或者map结构拆分成多行显示,也被称为列转行函数。

SELECT explode(array(
'
{"level":"2","time":1650973942596,"type":"0"}',
'{"level":"1","time":1650973942597,"type":"1"}',
'{"level":"3","time":1650973942598,"type":"2"}
'
))

4ed36e14418540dd9d662e075257be7c.png

select explode(map('level',1,'time',1650973942596,'type',0))

d137021b68664fa99615680d9200c8ad.png


4.regexp_replace


regexp_replace就好比python里面的sub()匹配之后替换:

基础语法:


regexp_replace(string A, string B, string C)


功能:将字符串A中的符合java正则表达式B的部分替换为C。

select REGEXP_REPLACE('{"level":"2","time":1650973942596,"type":"0"}','2','1');

dff5003d8c45442cafb222cae8435f24.png


三、Hive解析JSON数组


我们先拿到一组JSON数组:


[{"level":"2","time":1650973942596,"type":"0"},


{"level":"1","time":1650973942597,"type":"1"},


{"level":"3","time":1650973942598,"type":"2"}]


我们想要把他们转换为一下格式,变成一下这种形式:


478b5481e52141988a00bea2eacd062a.png


第一步:

第一步我们要将数组外面的,给替换掉,以免后续我们按;划分展开。

SELECT 
    REGEXP_REPLACE('[{"level":"2","time":1650973942596,"type":"0"},{"level":"1","time":1650973942597,"type":"1"},{"level":"3","time":1650973942598,"type":"2"}]','\\}\\,\\{','\\}\\;\\{')


f50e0505651947cfa83014c7205b06be.png


第二步:


将数组两边的[]给去掉:


select
REGEXP_REPLACE( 
    REGEXP_REPLACE('[{"level":"2","time":1650973942596,"type":"0"},{"level":"1","time":1650973942597,"type":"1"},{"level":"3","time":1650973942598,"type":"2"}]','\\}\\,\\{','\\}\\;\\{')
    ,'\\[|\\]','')

第三步:


按分号我们进行划分:


SELECT 
    split(
    REGEXP_REPLACE( 
    REGEXP_REPLACE('[{"level":"2","time":1650973942596,"type":"0"},{"level":"1","time":1650973942597,"type":"1"},{"level":"3","time":1650973942598,"type":"2"}]','\\}\\,\\{','\\}\\;\\{')
    ,'\\[|\\]','')
    ,'\\;')


92f2736bec474771aff02eab61ddc553.png

第四步:


之后我们便可以使用explode进行平铺了:

select 
    explode(
    split(
    REGEXP_REPLACE( 
    REGEXP_REPLACE('[{"level":"2","time":1650973942596,"type":"0"},{"level":"1","time":1650973942597,"type":"1"},{"level":"3","time":1650973942598,"type":"2"}]','\\}\\,\\{','\\}\\;\\{')
    ,'\\[|\\]','')
    ,'\\;')
    )


06721ec3998b4e12abf6892bd6e49eea.png


第五步:


最后在此表的基础之上我们再使用get_json_object或者json_tuple函数就好了:


SELECT 
      GET_JSON_OBJECT(track,'$.level') as level,
      GET_JSON_OBJECT(track,'$.time') as times,
      GET_JSON_OBJECT(track,'$.type') as types
    from (
    select 
    explode(
    split(
    REGEXP_REPLACE( 
    REGEXP_REPLACE('[{"level":"2","time":1650973942596,"type":"0"},{"level":"1","time":1650973942597,"type":"1"},{"level":"3","time":1650973942598,"type":"2"}]','\\}\\,\\{','\\}\\;\\{')
    ,'\\[|\\]','')
    ,'\\;')
    )track )track

c7d327a23d1b4741ac16f4c53ad399bf.png

目录
相关文章
|
19天前
|
自然语言处理 编译器 Linux
|
25天前
|
自然语言处理 数据可视化 前端开发
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
合合信息的智能文档处理“百宝箱”涵盖文档解析、向量化模型、测评工具等,解决了复杂文档解析、大模型问答幻觉、文档解析效果评估、知识库搭建、多语言文档翻译等问题。通过可视化解析工具 TextIn ParseX、向量化模型 acge-embedding 和文档解析测评工具 markdown_tester,百宝箱提升了文档处理的效率和精确度,适用于多种文档格式和语言环境,助力企业实现高效的信息管理和业务支持。
3986 5
从数据提取到管理:合合信息的智能文档处理全方位解析【合合信息智能文档处理百宝箱】
|
14天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
15天前
|
存储 分布式计算 Java
存算分离与计算向数据移动:深度解析与Java实现
【11月更文挑战第10天】随着大数据时代的到来,数据量的激增给传统的数据处理架构带来了巨大的挑战。传统的“存算一体”架构,即计算资源与存储资源紧密耦合,在处理海量数据时逐渐显露出其局限性。为了应对这些挑战,存算分离(Disaggregated Storage and Compute Architecture)和计算向数据移动(Compute Moves to Data)两种架构应运而生,成为大数据处理领域的热门技术。
37 2
|
18天前
|
JSON 缓存 前端开发
PHP如何高效地处理JSON数据:从编码到解码
在现代Web开发中,JSON已成为数据交换的标准格式。本文探讨了PHP如何高效处理JSON数据,包括编码和解码的过程。通过简化数据结构、使用优化选项、缓存机制及合理设置解码参数等方法,可以显著提升JSON处理的性能,确保系统快速稳定运行。
|
24天前
|
存储 安全 Java
系统安全架构的深度解析与实践:Java代码实现
【11月更文挑战第1天】系统安全架构是保护信息系统免受各种威胁和攻击的关键。作为系统架构师,设计一套完善的系统安全架构不仅需要对各种安全威胁有深入理解,还需要熟练掌握各种安全技术和工具。
67 10
|
23天前
|
Prometheus 监控 Cloud Native
实战经验:成功的DevOps实施案例解析
实战经验:成功的DevOps实施案例解析
36 6
|
21天前
|
UED
<大厂实战经验> Flutter&鸿蒙next 中使用 initState 和 mounted 处理异步请求的详细解析
在 Flutter 开发中,处理异步请求是常见需求。本文详细介绍了如何在 `initState` 中触发异步请求,并使用 `mounted` 属性确保在适当时机更新 UI。通过示例代码,展示了如何安全地进行异步操作和处理异常,避免在组件卸载后更新 UI 的问题。希望本文能帮助你更好地理解和应用 Flutter 中的异步处理。
61 3
|
21天前
|
JavaScript API 开发工具
<大厂实战场景> ~ Flutter&鸿蒙next 解析后端返回的 HTML 数据详解
本文介绍了如何在 Flutter 中解析后端返回的 HTML 数据。首先解释了 HTML 解析的概念,然后详细介绍了使用 `http` 和 `html` 库的步骤,包括添加依赖、获取 HTML 数据、解析 HTML 内容和在 Flutter UI 中显示解析结果。通过具体的代码示例,展示了如何从 URL 获取 HTML 并提取特定信息,如链接列表。希望本文能帮助你在 Flutter 应用中更好地处理 HTML 数据。
100 1
|
24天前
|
自然语言处理 编译器 Linux
告别头文件,编译效率提升 42%!C++ Modules 实战解析 | 干货推荐
本文中,阿里云智能集团开发工程师李泽政以 Alinux 为操作环境,讲解模块相比传统头文件有哪些优势,并通过若干个例子,学习如何组织一个 C++ 模块工程并使用模块封装第三方库或是改造现有的项目。

推荐镜像

更多