一文速学-特征数据类别分析与预处理方法详解+Python代码

简介: 一文速学-特征数据类别分析与预处理方法详解+Python代码

前言


当我们开始准备数据建模、构建机器学习模型的时候,第一时间考虑的不应该是就考虑到选择模型的种类和方法。而是首先拿到特征数据和标签数据进行研究,挖掘特征数据包含的信息以及思考如何更好的处理这些特征数据。那么数据类型本身代表的含义就需要我们进行思考,究竟是定量计算还是进行定类分析更好呢?这就是这篇文章将要详解的一个问题。


一、特征类型判别


特征类型判断以及处理是前期特征工程重要的一环,也是决定特征质量好坏和权衡信息丢失最重要的一环。其中涉及到的数据有数值类型的数据,例如:年龄、体重、身高这类特征数据。也有字符类型特征数据,例如性别、社会阶层、血型、国家归属等数据。

按照数据存储的数据格式可以归纳为两类:

ecabf1e69d8742bb85b8a2db3a54d145.png


按照特征数据含义又可分为:


离散型随机变量:取值只能是可取范围内的指定数值类型的随机变量,比如年龄、车流量此类数据。

连续随机变量:按照测量或者计算方法得到,在某个范围内连取n个值,此类数据可化为定类数据。

二分类数据:此类数据仅只有两类:例如是与否、成功与失败。

多分类数据:此类数据有多类:例如天气出太阳、下雨、阴天。

周期型数据:此类数据存在一个周期循环:例如周数月数。


二、定量数据特征处理


拿到获取的原始特征,必须对每一特征分别进行归一化,比如,特征A的取值范围是[-1000,1000],特征B的取值范围是[-1,1].如果使用logistic回归,w1*x1+w2*x2,因为x1的取值太大了,所以x2基本起不了作用。所以,必须进行特征的归一化,每个特征都单独进行归一化。


关于处理定量数据我已经在:数据预处理归一化详细解释这篇文章里面讲述的很详细了,这里进行前后关联,共有min-max标准化、Z-score标准化、Sigmoid函数标准化三种方法:


根据特征数据含义类型来选择处理方法:


离散型随机变量处理方法:min-max标准化、Z-score标准化、Sigmoid函数标准

连续随机变量处理:Z-score标准化,Sigmoid函数标准


三.定类数据特征处理


我的上篇文章数据预处理归一化详细解释 并没有介绍关于定类数据我们如何去处理,在本篇文章详细介绍一些常用的处理方法:


1.LabelEncoding


直接替换方法适用于原始数据集中只存在少量数据需要人工进行调整的情况。如果需要调整的数据量非常大且数据格式不统一,直接替换的方法也可以实现我们的目的,但是这种方法需要的工作量会非常大。因此, 我们需要能够快速对整列变量的所有取值进行编码的方法。


LabelEncoding,即标签编码,作用是为变量的 n 个唯一取值分配一个[0, n-1]之间的编码,将该变量转换成连续的数值型变量。


from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit(['拥堵','缓行','畅行'])
le.transform(['拥堵','拥堵','畅行','缓行'])

array([0, 0, 1, 2])


2.OneHot Encoding


对于处理定类数据我们很容易想到将该类别的数据全部替换为数值:比如车辆拥堵情况,我们把拥堵标为1,缓行为2,畅行为3.那么这样是实现了标签编码的,但同时也给这些无量纲的数据转为了有量纲数据,我们本意是没有将它们比较之意的。机器可能会学习到“拥堵<缓行<畅行”,所以采用这个标签编码是不够的,需要进一步转换。因为有三种区间,所以有三个比特,即拥堵编码为100,缓行为010,畅行为001.如此一来每两个向量之间的距离都是根号2,在向量空间距离都相等,所以这样不会出现偏序性,基本不会影响基于向量空间度量算法的效果。


自然状态码为:000,001,010,011,100,101


独热编码为:000001,000010,000100,001000,010000,100000


我们可以使用sklearn的onehotencoder来实现:

from sklearn import preprocessing
enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 1], [0, 1, 0], [1, 0, 0]])    # fit来学习编码
enc.transform([[0, 0, 1]]).toarray()    # 进行编码

array([[1., 0., 1., 0., 0., 1.]])

数据矩阵是3*3的,那么原理是怎么来的呢?我们仔细观察:


image.png

第一列的第一个特征维度有两种取值0/1,所以对应的编码方式为10、01.


第二列的第二个特征也是一样的,类比第三列的第三哥特征。固001的独热编码就是101001了。


因为大部分算法是基于向量空间中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到圆点是等距的。使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。


将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。


优点:


独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。


缺点:


当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。


应用场景:


独热编码用来解决类别型数据的离散值问题。


无用场景:


将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。 有些基于树的算法在处理变量时,并不是基于向量空间度量,数值只是个类别符号,即没有偏序关系,所以不用进行独热编码。  Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度。


代码实现


方法一:

实现one-hot编码有两种方法:sklearn库中的 OneHotEncoder() 方法只能处理数值型变量如果是字符型数据,需要先对其使用 LabelEncoder() 转换为数值数据,再使用 OneHotEncoder() 进行独热编码处理,并且需要自行在原数据集中删去进行独热编码处理的原变量。

import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
lE = LabelEncoder()
df=pd.DataFrame({'路况':['拥堵','畅行','畅行','拥堵','畅行','缓行','缓行','拥堵','缓行','拥堵','拥堵','拥堵']})
df['路况']=lE.fit_transform(df['路况'])
OHE = OneHotEncoder()
X = OHE.fit_transform(df).toarray()
df = pd.concat([df, pd.DataFrame(X, columns=['拥堵', '缓行','畅行'])],axis=1)
df

77fd6c63336744c3a59a1548f2a6595a.png

方法二:

pandas自带get_dummies()方法


get_dummies() 方法可以对数值数据和字符数据进行处理,直接在原数据集上应用该方法即可。该方法产生一个新的Dataframe,列名由原变量延伸而成。将其合并入原数据集时,需要自行在原数据集中删去进行虚拟变量处理的原变量。

import pandas as pd
df=pd.DataFrame({'路况':['拥堵','畅行','畅行','拥堵','畅行','缓行','缓行','拥堵','缓行','拥堵','拥堵','拥堵']})
pd.get_dummies(df,drop_first=False) 

e37312ed2597485b91a4afa93d13a5ae.png

目录
相关文章
|
6天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
9天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
6天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
13 1
|
10天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
6天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
8天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
20 2
|
10天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
29 4
|
自然语言处理 算法 Python
|
自然语言处理 算法 索引
|
5天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。