一文速学-特征数据类别分析与预处理方法详解+Python代码

简介: 一文速学-特征数据类别分析与预处理方法详解+Python代码

前言


当我们开始准备数据建模、构建机器学习模型的时候,第一时间考虑的不应该是就考虑到选择模型的种类和方法。而是首先拿到特征数据和标签数据进行研究,挖掘特征数据包含的信息以及思考如何更好的处理这些特征数据。那么数据类型本身代表的含义就需要我们进行思考,究竟是定量计算还是进行定类分析更好呢?这就是这篇文章将要详解的一个问题。


一、特征类型判别


特征类型判断以及处理是前期特征工程重要的一环,也是决定特征质量好坏和权衡信息丢失最重要的一环。其中涉及到的数据有数值类型的数据,例如:年龄、体重、身高这类特征数据。也有字符类型特征数据,例如性别、社会阶层、血型、国家归属等数据。

按照数据存储的数据格式可以归纳为两类:

ecabf1e69d8742bb85b8a2db3a54d145.png


按照特征数据含义又可分为:


离散型随机变量:取值只能是可取范围内的指定数值类型的随机变量,比如年龄、车流量此类数据。

连续随机变量:按照测量或者计算方法得到,在某个范围内连取n个值,此类数据可化为定类数据。

二分类数据:此类数据仅只有两类:例如是与否、成功与失败。

多分类数据:此类数据有多类:例如天气出太阳、下雨、阴天。

周期型数据:此类数据存在一个周期循环:例如周数月数。


二、定量数据特征处理


拿到获取的原始特征,必须对每一特征分别进行归一化,比如,特征A的取值范围是[-1000,1000],特征B的取值范围是[-1,1].如果使用logistic回归,w1*x1+w2*x2,因为x1的取值太大了,所以x2基本起不了作用。所以,必须进行特征的归一化,每个特征都单独进行归一化。


关于处理定量数据我已经在:数据预处理归一化详细解释这篇文章里面讲述的很详细了,这里进行前后关联,共有min-max标准化、Z-score标准化、Sigmoid函数标准化三种方法:


根据特征数据含义类型来选择处理方法:


离散型随机变量处理方法:min-max标准化、Z-score标准化、Sigmoid函数标准

连续随机变量处理:Z-score标准化,Sigmoid函数标准


三.定类数据特征处理


我的上篇文章数据预处理归一化详细解释 并没有介绍关于定类数据我们如何去处理,在本篇文章详细介绍一些常用的处理方法:


1.LabelEncoding


直接替换方法适用于原始数据集中只存在少量数据需要人工进行调整的情况。如果需要调整的数据量非常大且数据格式不统一,直接替换的方法也可以实现我们的目的,但是这种方法需要的工作量会非常大。因此, 我们需要能够快速对整列变量的所有取值进行编码的方法。


LabelEncoding,即标签编码,作用是为变量的 n 个唯一取值分配一个[0, n-1]之间的编码,将该变量转换成连续的数值型变量。


from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
le.fit(['拥堵','缓行','畅行'])
le.transform(['拥堵','拥堵','畅行','缓行'])

array([0, 0, 1, 2])


2.OneHot Encoding


对于处理定类数据我们很容易想到将该类别的数据全部替换为数值:比如车辆拥堵情况,我们把拥堵标为1,缓行为2,畅行为3.那么这样是实现了标签编码的,但同时也给这些无量纲的数据转为了有量纲数据,我们本意是没有将它们比较之意的。机器可能会学习到“拥堵<缓行<畅行”,所以采用这个标签编码是不够的,需要进一步转换。因为有三种区间,所以有三个比特,即拥堵编码为100,缓行为010,畅行为001.如此一来每两个向量之间的距离都是根号2,在向量空间距离都相等,所以这样不会出现偏序性,基本不会影响基于向量空间度量算法的效果。


自然状态码为:000,001,010,011,100,101


独热编码为:000001,000010,000100,001000,010000,100000


我们可以使用sklearn的onehotencoder来实现:

from sklearn import preprocessing
enc = preprocessing.OneHotEncoder()
enc.fit([[0, 0, 1], [0, 1, 0], [1, 0, 0]])    # fit来学习编码
enc.transform([[0, 0, 1]]).toarray()    # 进行编码

array([[1., 0., 1., 0., 0., 1.]])

数据矩阵是3*3的,那么原理是怎么来的呢?我们仔细观察:


image.png

第一列的第一个特征维度有两种取值0/1,所以对应的编码方式为10、01.


第二列的第二个特征也是一样的,类比第三列的第三哥特征。固001的独热编码就是101001了。


因为大部分算法是基于向量空间中的度量来进行计算的,为了使非偏序关系的变量取值不具有偏序性,并且到圆点是等距的。使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。将离散型特征使用one-hot编码,会让特征之间的距离计算更加合理。离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1。


将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。


优点:


独热编码解决了分类器不好处理属性数据的问题,在一定程度上也起到了扩充特征的作用。它的值只有0和1,不同的类型存储在垂直的空间。


缺点:


当类别的数量很多时,特征空间会变得非常大。在这种情况下,一般可以用PCA来减少维度。而且one hot encoding+PCA这种组合在实际中也非常有用。


应用场景:


独热编码用来解决类别型数据的离散值问题。


无用场景:


将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码。 有些基于树的算法在处理变量时,并不是基于向量空间度量,数值只是个类别符号,即没有偏序关系,所以不用进行独热编码。  Tree Model不太需要one-hot编码: 对于决策树来说,one-hot的本质是增加树的深度。


代码实现


方法一:

实现one-hot编码有两种方法:sklearn库中的 OneHotEncoder() 方法只能处理数值型变量如果是字符型数据,需要先对其使用 LabelEncoder() 转换为数值数据,再使用 OneHotEncoder() 进行独热编码处理,并且需要自行在原数据集中删去进行独热编码处理的原变量。

import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
lE = LabelEncoder()
df=pd.DataFrame({'路况':['拥堵','畅行','畅行','拥堵','畅行','缓行','缓行','拥堵','缓行','拥堵','拥堵','拥堵']})
df['路况']=lE.fit_transform(df['路况'])
OHE = OneHotEncoder()
X = OHE.fit_transform(df).toarray()
df = pd.concat([df, pd.DataFrame(X, columns=['拥堵', '缓行','畅行'])],axis=1)
df

77fd6c63336744c3a59a1548f2a6595a.png

方法二:

pandas自带get_dummies()方法


get_dummies() 方法可以对数值数据和字符数据进行处理,直接在原数据集上应用该方法即可。该方法产生一个新的Dataframe,列名由原变量延伸而成。将其合并入原数据集时,需要自行在原数据集中删去进行虚拟变量处理的原变量。

import pandas as pd
df=pd.DataFrame({'路况':['拥堵','畅行','畅行','拥堵','畅行','缓行','缓行','拥堵','缓行','拥堵','拥堵','拥堵']})
pd.get_dummies(df,drop_first=False) 

e37312ed2597485b91a4afa93d13a5ae.png

目录
相关文章
|
12天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
53 33
|
13天前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
36 10
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费市场分析的深度学习模型
使用Python实现智能食品消费市场分析的深度学习模型
123 36
|
30天前
|
数据可视化 算法 数据挖掘
Python量化投资实践:基于蒙特卡洛模拟的投资组合风险建模与分析
蒙特卡洛模拟是一种利用重复随机抽样解决确定性问题的计算方法,广泛应用于金融领域的不确定性建模和风险评估。本文介绍如何使用Python和EODHD API获取历史交易数据,通过模拟生成未来价格路径,分析投资风险与收益,包括VaR和CVaR计算,以辅助投资者制定合理决策。
74 15
|
1月前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费趋势分析的深度学习模型
使用Python实现智能食品消费趋势分析的深度学习模型
118 18
|
1月前
|
安全
Python-打印99乘法表的两种方法
本文详细介绍了两种实现99乘法表的方法:使用`while`循环和`for`循环。每种方法都包括了步骤解析、代码演示及优缺点分析。文章旨在帮助编程初学者理解和掌握循环结构的应用,内容通俗易懂,适合编程新手阅读。博主表示欢迎读者反馈,共同进步。
|
1月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
73 8
|
机器学习/深度学习 算法 数据挖掘
一文归纳Python特征生成方法(全)
创造新的特征是一件十分困难的事情,需要丰富的专业知识和大量的时间。机器学习应用的本质基本上就是特征工程。 ——Andrew Ng
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。