MYSQL索引也是要考察的哈

本文涉及的产品
RDS MySQL DuckDB 分析主实例,集群系列 4核8GB
简介: 《基础》系列

3、MySQL 使用索引的原因?

根本原因

  • 索引的出现,就是为了提高数据查询的效率,就像书的目录一样。
  • 对于数据库的表而言,索引其实就是它的“目录”。

扩展

  • 创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
  • 帮助引擎层避免排序和临时表
  • 将随机 IO 变为顺序 IO,加速表和表之间的连接。

4、索引的三种常见底层数据结构以及优缺点

三种常见的索引底层数据结构:分别是哈希表、有序数组和搜索树。

  • 哈希表这种适用于等值查询的场景,比如 memcached 以及其它一些 NoSQL 引擎,不适合范围查询。
  • 有序数组索引只适用于静态存储引擎,等值和范围查询性能好,但更新数据成本高。
  • N 叉树由于读写上的性能优点以及适配磁盘访问模式以及广泛应用在数据库引擎中。
  • 扩展(以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。棵树高是 4 的时候,就可以存 1200 的 3 次方个值,这已经 17 亿了。考虑到树根的数据块总是在内存中的,一个 10 亿行的表上一个整数字段的索引,查找一个值最多只需要访问 3 次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了。)

5、索引的常见类型以及它是如何发挥作用的?

根据叶子节点的内容,索引类型分为主键索引和非主键索引。

  • 主键索引的叶子节点存的整行数据,在InnoDB里也被称为聚簇索引。
  • 非主键索引叶子节点存的主键的值,在InnoDB里也被称为二级索引。

6、MyISAM 和 InnoDB 实现 B 树索引方式的区别是什么?

  • InnoDB 存储引擎:B+ 树索引的叶子节点保存数据本身,其数据文件本身就是索引文件。
  • MyISAM 存储引擎:B+ 树索引的叶子节点保存数据的物理地址,叶节点的 data 域存放的是数据记录的地址,索引文件和数据文件是分离的。

7、InnoDB 为什么设计 B+ 树索引?

两个考虑因素:

  • InnoDB 需要执行的场景和功能需要在特定查询上拥有较强的性能。
  • CPU 将磁盘上的数据加载到内存中需要花费大量时间。

为什么选择 B+ 树:

  • 哈希索引虽然能提供O(1)复杂度查询,但对范围查询和排序却无法很好的支持,最终会导致全表扫描。
  • B 树能够在非叶子节点存储数据,但会导致在查询连续数据可能带来更多的随机 IO。
  • 而 B+ 树的所有叶节点可以通过指针来相互连接,减少顺序遍历带来的随机 IO。
  • 普通索引还是唯一索引?
    由于唯一索引用不上 change buffer 的优化机制,因此如果业务可以接受,从性能角度出发建议你优先考虑非唯一索引。

8、什么是覆盖索引和索引下推?

覆盖索引:

  • 在某个查询里面,索引 k 已经“覆盖了”我们的查询需求,称为覆盖索引。
  • 覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段。

索引下推:

  • MySQL 5.6 引入的索引下推优化(index condition pushdown), 可以在索引遍历过程中,对索引中包含的字段先做判断,直接过滤掉不满足条件的记录,减少回表次数。

9、哪些操作会导致索引失效?

  • 对索引使用左或者左右模糊匹配,也就是 like %xx 或者 like %xx% 这两种方式都会造成索引失效。原因在于查询的结果可能是多个,不知道从哪个索引值开始比较,于是就只能通过全表扫描的方式来查询。
  • 对索引进行函数/对索引进行表达式计算,因为索引保持的是索引字段的原始值,而不是经过函数计算的值,自然就没办法走索引。
  • 对索引进行隐式转换相当于使用了新函数。
  • WHERE 子句中的 OR语句,只要有条件列不是索引列,就会进行全表扫描。

10、字符串加索引

  • 直接创建完整索引,这样可能会比较占用空间。
  • 创建前缀索引,节省空间,但会增加查询扫描次数,并且不能使用覆盖索引。
  • 倒序存储,再创建前缀索引,用于绕过字符串本身前缀的区分度不够的问题。
  • 创建 hash 字段索引,查询性能稳定,有额外的存储和计算消耗,跟第三种方式一样,都不支持范围扫描。
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
6月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
6月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
205 4
|
8月前
|
存储 关系型数据库 MySQL
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
|
10月前
|
关系型数据库 MySQL 数据库
Mysql的索引
MYSQL索引主要有 : 单列索引 , 组合索引和空间索引 , 用的比较多的就是单列索引和组合索引 , 空间索引我这边没有用到过 单列索引 : 在MYSQL数据库表的某一列上面创建的索引叫单列索引 , 单列索引又分为 ● 普通索引:MySQL中基本索引类型,没有什么限制,允许在定义索引的列中插入重复值和空值,纯粹为了查询数据更快一点。 ● 唯一索引:索引列中的值必须是唯一的,但是允许为空值 ● 主键索引:是一种特殊的唯一索引,不允许有空值 ● 全文索引: 只有在MyISAM引擎、InnoDB(5.6以后)上才能使⽤用,而且只能在CHAR,VARCHAR,TEXT类型字段上使⽤用全⽂文索引。
|
6月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
159 2
|
SQL 关系型数据库 MySQL
深入解析MySQL的EXPLAIN:指标详解与索引优化
MySQL 中的 `EXPLAIN` 语句用于分析和优化 SQL 查询,帮助你了解查询优化器的执行计划。本文详细介绍了 `EXPLAIN` 输出的各项指标,如 `id`、`select_type`、`table`、`type`、`key` 等,并提供了如何利用这些指标优化索引结构和 SQL 语句的具体方法。通过实战案例,展示了如何通过创建合适索引和调整查询语句来提升查询性能。
2690 10
|
7月前
|
存储 关系型数据库 MySQL
MySQL覆盖索引解释
总之,覆盖索引就像是图书馆中那些使得搜索变得极为迅速和简单的工具,一旦正确使用,就会让你的数据库查询飞快而轻便。让数据检索就像是读者在图书目录中以最快速度找到所需信息一样简便。这样的效率和速度,让覆盖索引成为数据库优化师傅们手中的尚方宝剑,既能够提升性能,又能够保持系统的整洁高效。
187 9
|
8月前
|
机器学习/深度学习 关系型数据库 MySQL
对比MySQL全文索引与常规索引的互异性
现在,你或许明白了这两种索引的差异,但任何技术决策都不应仅仅基于理论之上。你可以创建你的数据库实验环境,尝试不同类型的索引,看看它们如何影响性能,感受它们真实的力量。只有这样,你才能熟悉它们,掌握什么时候使用全文索引,什么时候使用常规索引,以适应复杂多变的业务需求。
214 12
|
12月前
|
存储 关系型数据库 MySQL
MySQL索引学习笔记
本文深入探讨了MySQL数据库中慢查询分析的关键概念和技术手段。
767 81
|
9月前
|
SQL 存储 关系型数据库
MySQL选错索引了怎么办?
本文探讨了MySQL中因索引选择不当导致查询性能下降的问题。通过创建包含10万行数据的表并插入数据,分析了一条简单SQL语句在不同场景下的执行情况。实验表明,当数据频繁更新时,MySQL可能因统计信息不准确而选错索引,导致全表扫描。文章深入解析了优化器判断扫描行数的机制,指出基数统计误差是主要原因,并提供了通过`analyze table`重新统计索引信息的解决方法。
256 3

热门文章

最新文章

推荐镜像

更多