[云原生] [kubernetes] K8S安装存储类 - StorageClass

简介: [云原生] [kubernetes] K8S安装存储类 - StorageClass

理论

在动态资源供应模式下,通过StorageClass和PVC完成资源动态绑定(系统自动生成PV),并供Pod使用的存储管理机制。

什么是StorageClass

Kubernetes提供了一套可以自动创建PV的机制,即:Dynamic Provisioning(动态配置)。而这个机制的核心在于StorageClass这个API对象。
StorageClass对象会定义下面两部分内容:

  1. PV的属性。比如,存储类型,Volume的大小等。
  2. 创建这种PV需要用到的存储插件,即存储制备器。

有了这两个信息之后,Kubernetes就能够根据用户提交的PVC,找到一个对应的StorageClass,之后Kubernetes就会调用该StorageClass声明的存储插件,进而创建出需要的PV。

但是其实使用起来是一件很简单的事情,你只需要根据自己的需求,编写YAML文件即可,然后使用kubectl create命令执行即可。

StorageClass 资源

每个 StorageClass 都包含 provisionerparameters reclaimPolicy 字段, 这些字段会在 StorageClass 需要动态分配 PersistentVolume 时会使用到。

StorageClass 对象的命名很重要,用户使用这个命名来请求生成一个特定的类。 当创建 StorageClass 对象时,管理员设置 StorageClass 对象的命名和其他参数,一旦创建了对象就不能再对其更新。

管理员可以为没有申请绑定到特定 StorageClass 的 PVC 指定一个默认的存储类。

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
  name: standard
provisioner: kubernetes.io/aws-ebs
parameters:
  type: gp2
reclaimPolicy: Retain
allowVolumeExpansion: true
mountOptions:
  - debug
volumeBindingMode: Immediate

存储制备器(Provisioner)

每个 StorageClass 都有一个制备器(Provisioner),用来决定使用哪个卷插件制备 PV。 该字段必须指定。
你不限于指定此处列出的 “内置” 制备器(其名称前缀为 “kubernetes.io” 并打包在 Kubernetes 中)。 你还可以运行和指定外部制备器,这些独立的程序遵循由 Kubernetes 定义的 规范。 外部供应商的作者完全可以自由决定他们的代码保存于何处、打包方式、运行方式、使用的插件(包括 Flex)等。 代码仓库 kubernetes-sigs/sig-storage-lib-external-provisioner 包含一个用于为外部制备器编写功能实现的类库。你可以访问代码仓库 kubernetes-sigs/sig-storage-lib-external-provisioner 了解外部驱动列表。
例如,NFS 没有内部制备器,但可以使用外部制备器。 也有第三方存储供应商提供自己的外部制备器。

部署

搭建StorageClass + NFS,大致有以下几个步骤:

  1. 创建一个可用的NFS Server
  2. 创建Service Account,这是用来管控NFS Provisioner 在k8s集群中运行的权限
NFS provisioner是一个provisioner相关的插件,需要从网络上下载,我们已经下载下来放到镜像库中了
下载以后需要以pod方式运行通过deployment部署导入到本地环境中 创建StorageClass的时候需要指定provisioner
  1. 创建StorageClass,负责建立PVC并调用NFS provisioner进行预定的工作,并让PV与PVC建立关联
  2. 创建NFS provisioner,有两个功能,一个是在NFS共享目录下创建挂载点(volume),另一个则是建了PV并将PV与NFS的挂载点建立关联

一:创建NFS Server

# 安装nfs-server(所有节点的操作)
yum install -y nfs-utils
# 授权存储目录(master)
echo "/nfs/data/ *(insecure,rw,sync,no_root_squash)" > /etc/exports
# 执行以下命令,启动 nfs 服务;创建共享目录
mkdir -p /nfs/data
# 在master节点执行
systemctl enable rpcbind
systemctl enable nfs-server
systemctl start rpcbind
systemctl start nfs-server

# 使配置生效
exportfs -r
# 检查配置是否生效
exportfs
# 测试,在子节点 IP为master的ip
showmount -e 192.168.11.24

在这里插入图片描述

二:创建Service Account

管控NFS Provisioner 在k8s集群中运行的权限

rbac.yaml: 唯一需要修改的地方只有namespace,根据实际情况定义

--- 
apiVersion: v1
kind: ServiceAccount                 #创建个SA账号主要用来管理NFS provisioner在k8s集群中运行的权限
metadata:
  name: nfs-client-provisioner        #和上面的SA账号保持一致
  # replace with namespace where provisioner is deployed
  namespace: default
---
#以下就是ClusterRole,ClusterRoleBinding,Role,RoleBinding都是权限绑定配置,不在解释。直接复制即可。
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: nfs-client-provisioner-runner
rules:
  - apiGroups: [""]
    resources: ["nodes"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["persistentvolumes"]
    verbs: ["get", "list", "watch", "create", "delete"]
  - apiGroups: [""]
    resources: ["persistentvolumeclaims"]
    verbs: ["get", "list", "watch", "update"]
  - apiGroups: ["storage.k8s.io"]
    resources: ["storageclasses"]
    verbs: ["get", "list", "watch"]
  - apiGroups: [""]
    resources: ["events"]
    verbs: ["create", "update", "patch"]
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: run-nfs-client-provisioner
subjects:
  - kind: ServiceAccount
    name: nfs-client-provisioner
    # replace with namespace where provisioner is deployed
    namespace: default
roleRef:
  kind: ClusterRole
  name: nfs-client-provisioner-runner
  apiGroup: rbac.authorization.k8s.io
---
kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: leader-locking-nfs-client-provisioner
  # replace with namespace where provisioner is deployed
  namespace: default
rules:
  - apiGroups: [""]
    resources: ["endpoints"]
    verbs: ["get", "list", "watch", "create", "update", "patch"]
---
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
  name: leader-locking-nfs-client-provisioner
  # replace with namespace where provisioner is deployed
  namespace: default
subjects:
  - kind: ServiceAccount
    name: nfs-client-provisioner
    # replace with namespace where provisioner is deployed
    namespace: default
roleRef:
  kind: Role
  name: leader-locking-nfs-client-provisioner
  apiGroup: rbac.authorization.k8s.io

三:创建StorageClass 并指定 NFS provisioner

负责建立PVC并调用NFS provisioner进行预定的工作,并让PV与PVC建立关联
sc.yaml 需要把IP指定自己nfs服务器地址

## 创建NFS资源的StorageClass
apiVersion: storage.k8s.io/v1
#存储类的资源名称
kind: StorageClass
metadata:
 #存储类的名称,自定义
  name: nfs-storage                
  annotations:
  #注解,是否是默认的存储,注意:KubeSphere默认就需要个默认存储,因此这里注解要设置为“默认”的存储系统,表示为"true",代表默认。
    storageclass.kubernetes.io/is-default-class: "true"          
#存储分配器的名字,自定义
provisioner: k8s-sigs.io/nfs-subdir-external-provisioner         
parameters:
  archiveOnDelete: "true"  ## 删除pv的时候,pv的内容是否要备份

---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: nfs-client-provisioner
  labels:
    app: nfs-client-provisioner
  # replace with namespace where provisioner is deployed
  namespace: default
spec:
  #只运行一个副本应用
  replicas: 1                 
  #描述了如何用新的POD替换现有的POD
  strategy:                   
    #Recreate表示重新创建Pod
    type: Recreate 
  #选择后端Pod           
  selector:        
    matchLabels:
      app: nfs-client-provisioner
  template:
    metadata:
      labels:
        app: nfs-client-provisioner
    spec:
      serviceAccountName: nfs-client-provisioner          #创建账户
      containers:
        - name: nfs-client-provisioner         
          image: registry.cn-hangzhou.aliyuncs.com/lfy_k8s_images/nfs-subdir-external-provisioner:v4.0.2      #使用NFS存储分配器的镜像
          # resources:
          #    limits:
          #      cpu: 10m
          #    requests:
          #      cpu: 10m
          volumeMounts:
            - name: nfs-client-root           #定义个存储卷,
              mountPath: /persistentvolumes   #表示挂载容器内部的路径
          env:
            - name: PROVISIONER_NAME          #定义存储分配器的名称
              value: k8s-sigs.io/nfs-subdir-external-provisioner         #需要和上面定义的保持名称一致
            - name: NFS_SERVER                                       #指定NFS服务器的地址,你需要改成你的NFS服务器的IP地址
              value: 192.168.11.24   ## 指定自己nfs服务器地址
            - name: NFS_PATH                                
              value: /nfs/data  ## nfs服务器共享的目录            #指定NFS服务器共享的目录
      volumes:
        - name: nfs-client-root           #存储卷的名称,和前面定义的保持一致
          nfs:
            server: 192.168.11.24            #NFS服务器的地址,和上面保持一致,这里需要改为你的IP地址
            path: /nfs/data               #NFS共享的存储目录,和上面保持一致
# 保存上面文件到/usr/local/目录下
cd /usr/local/
sudo kubectl apply -f rbac.yaml
sudo kubectl apply -f sc.yaml

在这里插入图片描述

四:申明PVC进行测试

vi pvc.yaml

kind: PersistentVolumeClaim         #创建PVC资源
apiVersion: v1
metadata:
  name: nginx-pvc         #PVC的名称
spec:
  accessModes:            #定义对PV的访问模式,代表PV可以被多个PVC以读写模式挂载
    - ReadWriteMany
  resources:              #定义PVC资源的参数
    requests:             #设置具体资源需求
      storage: 200Mi      #表示申请200MI的空间资源
  storageClassName: nfs-storage          #指定存储类的名称,就指定上面创建的那个存储类。
# 测试自动创建PV
sudo kubectl apply -f pvc.yaml
# 获取pvc
kubectl get pvc
# kubectl delete -f pvc.yaml

在这里插入图片描述

参考资料 & 致谢

[1] K8S

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
4天前
|
存储 Kubernetes 开发者
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
Docker 是一种开源的应用容器引擎,允许开发者将应用程序及其依赖打包成可移植的镜像,并在任何支持 Docker 的平台上运行。其核心概念包括镜像、容器和仓库。镜像是只读的文件系统,容器是镜像的运行实例,仓库用于存储和分发镜像。Kubernetes(k8s)则是容器集群管理系统,提供自动化部署、扩展和维护等功能,支持服务发现、负载均衡、自动伸缩等特性。两者结合使用,可以实现高效的容器化应用管理和运维。Docker 主要用于单主机上的容器管理,而 Kubernetes 则专注于跨多主机的容器编排与调度。尽管 k8s 逐渐减少了对 Docker 作为容器运行时的支持,但 Doc
39 5
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
|
1月前
|
Kubernetes Cloud Native 微服务
云原生入门与实践:Kubernetes的简易部署
云原生技术正改变着现代应用的开发和部署方式。本文将引导你了解云原生的基础概念,并重点介绍如何使用Kubernetes进行容器编排。我们将通过一个简易的示例来展示如何快速启动一个Kubernetes集群,并在其上运行一个简单的应用。无论你是云原生新手还是希望扩展现有知识,本文都将为你提供实用的信息和启发性的见解。
|
1月前
|
Kubernetes Cloud Native 开发者
云原生入门:Kubernetes的简易指南
【10月更文挑战第41天】本文将带你进入云原生的世界,特别是Kubernetes——一个强大的容器编排平台。我们将一起探索它的基本概念和操作,让你能够轻松管理和部署应用。无论你是新手还是有经验的开发者,这篇文章都能让你对Kubernetes有更深入的理解。
|
1月前
|
运维 Kubernetes Cloud Native
云原生技术入门:Kubernetes和Docker的协同工作
【10月更文挑战第43天】在云计算时代,云原生技术成为推动现代软件部署和运行的关键力量。本篇文章将带你了解云原生的基本概念,重点探讨Kubernetes和Docker如何协同工作以支持容器化应用的生命周期管理。通过实际代码示例,我们将展示如何在Kubernetes集群中部署和管理Docker容器,从而为初学者提供一条清晰的学习路径。
|
1月前
|
Kubernetes Cloud Native 云计算
云原生入门:Kubernetes 和容器化基础
在这篇文章中,我们将一起揭开云原生技术的神秘面纱。通过简单易懂的语言,我们将探索如何利用Kubernetes和容器化技术简化应用的部署和管理。无论你是初学者还是有一定经验的开发者,本文都将为你提供一条清晰的道路,帮助你理解和运用这些强大的工具。让我们从基础开始,逐步深入了解,最终能够自信地使用这些技术来优化我们的工作流程。
|
23天前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。
|
21天前
|
Kubernetes Cloud Native 微服务
探索云原生技术:容器化与微服务架构的融合之旅
本文将带领读者深入了解云原生技术的核心概念,特别是容器化和微服务架构如何相辅相成,共同构建现代软件系统。我们将通过实际代码示例,探讨如何在云平台上部署和管理微服务,以及如何使用容器编排工具来自动化这一过程。文章旨在为开发者和技术决策者提供实用的指导,帮助他们在云原生时代中更好地设计、部署和维护应用。
|
1月前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
43 3
|
1月前
|
Cloud Native 持续交付 云计算
云原生架构的演进与挑战
随着云计算技术的不断发展,云原生架构已成为企业数字化转型的重要支撑。本文深入探讨了云原生架构的概念、发展历程、核心技术以及面临的挑战,旨在为读者提供一个全面了解云原生架构的视角。通过分析Kubernetes、Docker等关键技术的应用,以及微服务、持续集成/持续部署(CI/CD)等实践案例,本文揭示了云原生架构在提高应用开发效率、降低运维成本、增强系统可扩展性等方面的显著优势。同时,也指出了云原生架构在安全性、复杂性管理等方面所面临的挑战,并提出了相应的解决策略。
|
21天前
|
运维 Cloud Native 持续交付
云原生技术深度探索:重塑现代IT架构的无形之力####
本文深入剖析了云原生技术的核心概念、关键技术组件及其对现代IT架构变革的深远影响。通过实例解析,揭示云原生如何促进企业实现敏捷开发、弹性伸缩与成本优化,为数字化转型提供强有力的技术支撑。不同于传统综述,本摘要直接聚焦于云原生技术的价值本质,旨在为读者构建一个宏观且具体的技术蓝图。 ####

推荐镜像

更多