基于AIE平台的决策树算法的贵州省冬小麦的提取

简介: 基于AIE平台的决策树算法的贵州省冬小麦的提取

决策树模型实现冬小麦提取

依据作物在不同物候期内卫星影像的光谱存在差异的特征,可建立冬小麦提取算法,进行像元尺度冬小麦提取。

初始化环境

import aie

aie.Authenticate()
aie.Initialize()

指定需要检索的区域

feature_collection = aie.FeatureCollection('China_Province') \
                        .filter(aie.Filter.eq('province', '贵州省'))
region = feature_collection.geometry()

去云

因为SENTINEL_MSIL2A数据集现在AIE还没有去云波段,所以这一步目前还不能做。

影像检索

贵州省冬小麦典型物候期。播种期 10中上旬-11月上旬,旺长期2月上旬-3月,成熟期4月下旬-5月上旬

# 播种期影像
img1 = aie.ImageCollection('SENTINEL_MSIL2A') \
             .filterBounds(region) \
             .filterDate('2021-10-01', '2021-11-11') \
             .filter(aie.Filter.lte('eo:cloud_cover',60.0)) \
             .select(["B11","B8","B4","B3","B2"])\
             .median()
             # .map(removeLandsatCloud)          
# 拔节期影像
img2 = aie.ImageCollection('SENTINEL_MSIL2A')\
    .filterDate("2021-02-01", "2021-03-01")\
    .filterBounds(region)\
    .filter(aie.Filter.lt('eo:cloud_cover', 60))\
    .select(["B11","B8","B4","B3"])\
    .median()
# 成熟收获期影像
img3 = aie.ImageCollection('SENTINEL_MSIL2A')\
    .filterDate("2021-04-20", "2021-05-10")\
    .filterBounds(region)\
    .filter(aie.Filter.lt('eo:cloud_cover', 60))\
    .select(["B11","B8","B4","B3","B2",])\
    .median()

波段提取

red1 = img1.select("B4")
nir1 = img1.select("B8")
swir1 = img1.select("B11")
red2 = img2.select("B4")
nir2 = img2.select("B8")
red3 = img3.select("B4")
nir3 = img3.select("B8")
ndvi1 = (nir1.subtract(red1)).divide(nir1.add(red1)).rename(["NDVI"]).select("NDVI")
nbr1 = (nir1.subtract(swir1)).divide(nir1.add(swir1)).rename(["NBR"]).select("NBR")
ndvi2 = (nir2.subtract(red2)).divide(nir2.add(red2)).rename(["NDVI"]).select("NDVI")
ndvi3 = (nir3.subtract(red3)).divide(nir3.add(red3)).rename(["NDVI"]).select("NDVI")
# 小麦在10月份的近红外波段更大,短波红外波段更小
# 条件1:播种期NDVI小,NBR小
# 条件2:拔节期抽穗期 NDVI大
# 条件3:成熟期NDVI小于拔节期NDVI

wheat = ndvi1.lt(aie.Image.constant(0.3))\
            .And(nbr1.lt(aie.Image.constant(0.07)))\
            .And(ndvi2.gt(aie.Image.constant(0.32)))\
            .And(ndvi3.lt(ndvi2))\
            .clip(region)

数据可视化

之前我运行过了,等一下我们之间看本地效果。

# 结果可视化

map = aie.Map(
    center=region.getCenter(),
    height=800,
    zoom=7
)

vis_params = {
    'color': '#00FF00'
}

map.addLayer(
    region,
    vis_params,
    'region',
    bounds=region.getBounds()
)

mask_vis  = {
    'min': 0,
    'max': 1,
    'palette': ['#ffffff', '#008000']    # 0:白色, 1:绿色
}

ndvi_vis  = {
    'min': -0.2,
    'max': 0.6,
    'palette': ['#d7191c', '#fdae61', '#ffffc0', '#a6d96a', '#1a9641']
}

map.addLayer(ndvi1,ndvi_vis, 'ndvi1', bounds=region.getBounds())
map.addLayer(nir1,ndvi_vis, 'nir1', bounds=region.getBounds())
map.addLayer(ndvi2,ndvi_vis, 'ndvi2', bounds=region.getBounds())
map.addLayer(ndvi3,ndvi_vis, 'ndvi3', bounds=region.getBounds())
map.addLayer(wheat,mask_vis, 'wheat', bounds=region.getBounds())    # 绿色区域为小麦

map

重分类

wheat = wheat.where(wheat.eq(aie.Image.constant(0)),aie.Image(0))\
             .where(wheat.eq(aie.Image.constant(1)),aie.Image(1))

导出数据

task = aie.Export.image.toAsset(wheat,'wheat',100)
task.start()

精度评价

由于分类后处理的很多函数,aie都还没有,所以,可以去ArcGIS来看看结果。
贵州省冬小麦提取结果

这里可以计算一下面积,然后和贵州省冬小麦的播种的实际面积进行比较。
属性表

贵州省统计年鉴

PIE提取结果

$$AIE提取面积S1= 257356 * 100 *100 / 10000 =257356 ha = 257 kha$$
$$PIE提取面积S2= 114kha$$
$$统计年鉴播种面积S3= 138.05kha$$
S2为真值,则
$$ \frac{\left | S1-S3 \right |}{S3} = \frac{\left | 257-138 \right |}{138}=86.2\%$$
$$ \frac{\left | S2-S3 \right |}{S3} = \frac{\left | 114-138 \right |}{138}=17.3\%$$

总结一下吧,我也不是比较,完全没有黑的意思,也没有踩和贬的意思。就是一样的数据,差不多的代码,跑下来结果相差有一点点大。原因的话,AIE里面没有去云,没有分类后处理,还有就是AIE里面我运行下来,空值较多,当然这也是和我的搜索条件有关。
本案例主要引用了AIE和PIE里面的案例,然后自己修改的。
阿里云里面的公式我也不太会用。
PS:阿里云的小哥哥真的很用心。

相关文章
|
10天前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
47 4
|
8月前
|
存储 算法 安全
.NET 平台 SM2 国密算法 License 证书生成深度解析
授权证书文件的后缀通常取决于其编码格式和具体用途。本文档通过一个示例程序展示了如何在 .NET 平台上使用国密 SM2 算法生成和验证许可证(License)文件。该示例不仅详细演示了 SM2 国密算法的实际应用场景,还提供了关于如何高效处理大规模许可证文件生成任务的技术参考。通过对不同并发策略的性能测试,开发者可以更好地理解如何优化许可证生成流程,以满足高并发和大数据量的需求。 希望这段描述更清晰地传达了程序的功能和技术亮点。
920 14
.NET 平台 SM2 国密算法 License 证书生成深度解析
|
3月前
|
监控 算法 安全
基于 C# 基数树算法的网络屏幕监控敏感词检测技术研究
随着数字化办公和网络交互迅猛发展,网络屏幕监控成为信息安全的关键。基数树(Trie Tree)凭借高效的字符串处理能力,在敏感词检测中表现出色。结合C#语言,可构建高时效、高准确率的敏感词识别模块,提升网络安全防护能力。
93 2
|
5月前
|
存储 机器学习/深度学习 算法
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty 敏感词
KMP、Trie树 、AC自动机‌ ,三大算法实现 优雅 过滤 netty  敏感词
|
5月前
|
监控 算法 数据处理
基于 C++ 的 KD 树算法在监控局域网屏幕中的理论剖析与工程实践研究
本文探讨了KD树在局域网屏幕监控中的应用,通过C++实现其构建与查询功能,显著提升多维数据处理效率。KD树作为一种二叉空间划分结构,适用于屏幕图像特征匹配、异常画面检测及数据压缩传输优化等场景。相比传统方法,基于KD树的方案检索效率提升2-3个数量级,但高维数据退化和动态更新等问题仍需进一步研究。未来可通过融合其他数据结构、引入深度学习及开发增量式更新算法等方式优化性能。
159 17
|
5月前
|
存储 监控 算法
局域网上网记录监控的 C# 基数树算法高效检索方案研究
在企业网络管理与信息安全领域,局域网上网记录监控是维护网络安全、规范网络行为的关键举措。随着企业网络数据量呈指数级增长,如何高效存储和检索上网记录数据成为亟待解决的核心问题。基数树(Trie 树)作为一种独特的数据结构,凭借其在字符串处理方面的卓越性能,为局域网上网记录监控提供了创新的解决方案。本文将深入剖析基数树算法的原理,并通过 C# 语言实现的代码示例,阐述其在局域网上网记录监控场景中的具体应用。
137 7
|
4月前
|
机器学习/深度学习 算法 搜索推荐
决策树算法如何读懂你的购物心理?一文看懂背后的科学
"你为什么总能收到刚好符合需求的商品推荐?你有没有好奇过,为什么刚浏览过的商品就出现了折扣通知?
|
7月前
|
人工智能 算法 语音技术
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
清华大学与腾讯联合推出的Video-T1技术,通过测试时扩展(TTS)和Tree-of-Frames方法,显著提升视频生成的连贯性与文本匹配度,为影视制作、游戏开发等领域带来突破性解决方案。
217 4
Video-T1:视频生成实时手术刀!清华腾讯「帧树算法」终结闪烁抖动
|
6月前
|
机器学习/深度学习 存储 Kubernetes
【重磅发布】AllData数据中台核心功能:机器学习算法平台
杭州奥零数据科技有限公司成立于2023年,专注于数据中台业务,维护开源项目AllData并提供商业版解决方案。AllData提供数据集成、存储、开发、治理及BI展示等一站式服务,支持AI大模型应用,助力企业高效利用数据价值。
|
7月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
169 3
 算法系列之数据结构-Huffman树

热门文章

最新文章