云原生之 Docker篇 Docker Compose介绍及使用入门

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 云原生之 Docker篇 Docker Compose介绍及使用入门

正文


一、compose介绍


在先前介绍Docker的内容中,我们从代码到部署容器需要经过两个步骤:


打包镜像docker build;

部署启动容器docker run;


在真实的企业级应用中,一个服务往往需要和很多个其它的服务进行关联,单个服务也有可能有多个容器实例,如果需要发布,很可能会需要人员手动对每一个容器进行打包和启动的操作,非常繁琐,容易出错。


在这种背景下,Docker Compose就有了用武之地。简单来说,Docker Compose是一个用于定义和运行多个容器的工具,通过docker-compose.yml来实现对容器集群的编排工作。


Docker Compose管理着如下三个内容:

  • 工程,docker-compose运行的目录即为一个工程,在微服务场景下,我们往往都是使用git submodule的方式组建工程的,因此父项目就可以成为一个docker compose的工程;
  • 服务,对应子项目,一个工程可以包含多个子项目;
  • 容器,对应服务的实例,一个服务可以有多个实例;

Docker Compose当然也存在不足的地方,就是它只能用在单一host上进行容器编排,无法跨节点host对容器进行编排,那是Docker Swarm和K8s的范畴了,Docker Swarm


二、compose使用


2.1 单服务单容器使用


我们新建一个SpringBoot应用,仅仅包含一个Controller:

@Slf4j
@RestController
public class HelloController {
    @GetMapping("/getHello")
    public String getHello(){
        log.info("myapp works!");
        return "myapp is running ok!!!";
    }
}

请务必保证程序能正常运行,再进行如下操作。并进行package,打成jar包。


编写Dockerfile:

FROM openjdk:8
EXPOSE 8080
ADD  target/myapp-0.0.1-SNAPSHOT.jar /demo.jar
ENTRYPOINT ["java", "-jar", "demo.jar"]

编写docker-compose.yml文件:

# 使用的yml版本
version: "3.9"
services:
  # 服务名称,可以自定义
  myapp:
    # 容器名称,可以自定义
    container_name: myapp
    # 指定Dockerfile所在的目录
    build: .
    ports:
      - "8080:8080"

然后执行docker-compose up即可,主要完成以下的两步操作:


镜像构建docker build;

启动yml中的所有容器docker run;

执行过程如下:

[root@wlidc ~]# docker-compose up
# 创建了默认类型的自定义网络,即bridge类型网络,而非使用默认的docker0桥接网络,拥有自己的独立网段,可以通过docker network ls及docker network inspect查看具体的网络信息
Creating network "myapp_default" with the default driver
Building myapp
[+] Building 0.5s (7/7) FINISHED
 => [internal] load build definition from Dockerfile                                                                                 0.0s
 => => transferring dockerfile: 153B                                                                                                 0.0s
 => [internal] load .dockerignore                                                                                                    0.0s
 => => transferring context: 2B                                                                                                      0.0s
 => [internal] load metadata for docker.io/library/openjdk:8                                                                         0.0s
 => [internal] load build context                                                                                                    0.2s
 => => transferring context: 17.62MB                                                                                                 0.1s
 => CACHED [1/2] FROM docker.io/library/openjdk:8                                                                                    0.0s
 => [2/2] ADD  target/myapp-0.0.1-SNAPSHOT.jar /demo.jar                                                                             0.1s
 => exporting to image                                                                                                               0.1s
 => => exporting layers                                                                                                              0.1s
 # 将镜像写入本地的镜像仓库,并以项目名称_服务名称命名镜像
 => => writing image sha256:c387978706931f09fa16a737704f2c1047e8f632de192a25b0dc42dc151ac4c7                                         0.0s
 => => naming to docker.io/library/myapp_myapp                                                                                       0.0s
Use 'docker scan' to run Snyk tests against images to find vulnerabilities and learn how to fix them
WARNING: Image for service myapp was built because it did not already exist. To rebuild this image you must use `docker-compose build` or `docker-compose up --build`.
Creating myapp ... done
Attaching to myapp
myapp    |
myapp    |   .   ____          _            __ _ _
myapp    |  /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \
myapp    | ( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
myapp    |  \\/  ___)| |_)| | | | | || (_| |  ) ) ) )
myapp    |   '  |____| .__|_| |_|_| |_\__, | / / / /
myapp    |  =========|_|==============|___/=/_/_/_/
myapp    |  :: Spring Boot ::                (v2.6.0)
......

到此,我们的单容器使用方式完成了。


如下是一些常见的docker-compose操作(需要在工程目录下执行命令):


[root@wlidc ~]# docker-compose down
Stopping myapp ... done
Removing myapp ... done
Removing network myapp_default

docker-compose ls,查看所有运行的容器;

[root@wlidc ~]# docker-compose ps
Name         Command         State           Ports
-----------------------------------------------------------
myapp   java -jar demo.jar   Up      0.0.0.0:8080->8080/tcp
  • docker-compose logs -f container_name,查看具体容器的日志,-f参数表示实时日志输出;
  • docker-compose port container_name container_port,查看和容器端口绑定的主机端口;
  • docker-compose stop container_name,停止指定的容器,如果不指定则停止所有的容器;
  • docker-compose start container_name,启动指定的容器,如果不指定则停止所有的容器;
  • docker-compose rm container_name,删除指定的已停止容器,如果不指定则删除所有已停止容器;
  • docker-compose build,构建或者重新构建服务的镜像,但不会创建和启动容器;


2.2 多服务多容器依赖使用


假设我们的应用需要依赖其它服务,比如需要使用redis,mysql等,那么这种场景下,就需要被依赖的容器先启动。


首先,我们改造上述例子中的myapp代码,需要引入redis的支持依赖:

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>       
<dependency>
    <groupId>org.apache.commons</groupId>
    <artifactId>commons-pool2</artifactId>
</dependency>

然后增加redis的配置,容器启动的默认redis是没有密码的,所以不用配置password。

server:
  port: 8080
spring:
  redis:
    host: 127.0.0.1
    port: 6379
    lettuce:
      pool:
        max-active: 8
        max-idle: 8
        min-idle: 0

再增加redis的序列化和反序列化的配置:

@Configuration
@AutoConfigureAfter(RedisAutoConfiguration.class)
public class RedisConfig {
    /**
     * 配置自定义redisTemplate
     * @return
     */
    @Bean
    RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory redisConnectionFactory) {
        RedisTemplate<String, Object> template = new RedisTemplate<>();
        template.setConnectionFactory(redisConnectionFactory);
        //使用Jackson2JsonRedisSerializer来序列化和反序列化redis的value值
        Jackson2JsonRedisSerializer serializer = new Jackson2JsonRedisSerializer(Object.class);
        ObjectMapper mapper = new ObjectMapper();
        mapper.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        mapper.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        serializer.setObjectMapper(mapper);
        template.setValueSerializer(serializer);
        //使用StringRedisSerializer来序列化和反序列化redis的key值
        template.setKeySerializer(new StringRedisSerializer());
        template.setHashKeySerializer(new StringRedisSerializer());
        template.setHashValueSerializer(serializer);
        template.afterPropertiesSet();
        return template;
    }
}

再后,我们需要修改Controller的逻辑,使得返回的结果依赖redis:

@Slf4j
@RestController
public class HelloController {
    @Autowired
    private RedisTemplate redisTemplate;
    @GetMapping("/getHello")
    public String getHello(){
        log.info("myapp works!");
        Long counter = redisTemplate.opsForValue().increment("counter");
        return "myapp is running " + counter + "times!";
    }
}

如此,每次访问该接口都会使得计数器加1并返回结果。


最后,我们只需要修改docker-compose.yml:

version: "3.9"
services:
  myapp:
    container_name: myapp
    build: .
    ports:
      - "8080:8080"
    depends_on:
      - myredis
  myredis:
    image: "redis:latest"

其它内容不变,如此配置就全部完成了,注意在执行如下操作之前,先确保程序能够正常运行,可以先自行运行一个redis容器做下实验。


docker-compose up启动工程,过程如下:

......
Use 'docker scan' to run Snyk tests against images to find vulnerabilities and learn how to fix them
WARNING: Image for service myapp was built because it did not already exist. To rebuild this image you must use `docker-compose build` or `docker-compose up --build`.
Creating myapp           ... done
Creating myapp_myredis_1 ... done
Attaching to myapp_myredis_1, myapp
myredis_1  | 1:C 21 May 2022 13:19:06.934 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
myredis_1  | 1:C 21 May 2022 13:19:06.934 # Redis version=6.2.6, bits=64, commit=00000000, modified=0, pid=1, just started
myredis_1  | 1:C 21 May 2022 13:19:06.934 # Warning: no config file specified, using the default config. In order to specify a config file use redis-server /path/to/redis.conf
myredis_1  | 1:M 21 May 2022 13:19:06.935 * monotonic clock: POSIX clock_gettime
myredis_1  | 1:M 21 May 2022 13:19:06.936 * Running mode=standalone, port=6379.
myredis_1  | 1:M 21 May 2022 13:19:06.936 # Server initialized
myredis_1  | 1:M 21 May 2022 13:19:06.936 # WARNING overcommit_memory is set to 0! Background save may fail under low memory condition. To fix this issue add 'vm.overcommit_memory = 1' to /etc/sysctl.conf and then reboot or run the
command 'sysctl vm.overcommit_memory=1' for this to take effect.
myredis_1  | 1:M 21 May 2022 13:19:06.936 * Ready to accept connections
myapp      |
myapp      |   .   ____          _            __ _ _
myapp      |  /\\ / ___'_ __ _ _(_)_ __  __ _ \ \ \ \
myapp      | ( ( )\___ | '_ | '_| | '_ \/ _` | \ \ \ \
myapp      |  \\/  ___)| |_)| | | | | || (_| |  ) ) ) )
myapp      |   '  |____| .__|_| |_|_| |_\__, | / / / /
myapp      |  =========|_|==============|___/=/_/_/_/
myapp      |  :: Spring Boot ::                (v2.6.0)

此处的redis是使用的已有镜像,所以不会再创建redis的镜像,但是myapp是需要build构建的,所以需要创建myapp的镜像,然后再基于这俩个镜像分别创建两个容器,这两个容器都属于myapp这个工程下面。


2.3 多服务多容器独立使用


除了如上依赖容器的使用,日常开发中,我们都是使用git submodule的方式组织父工程和多个子工程,那么部署的时候就需要同时部署多个微服务子工程。


我们重新新建一个SpringBoot的项目,名称为demo,然后将工程下面的src删除,因为它将是一个父工程,然后新建两个模块service1和service2,这两个服务分别对外提供getHello的服务,service1端口设置8080,service2端口设置8081。


@Slf4j
@RestController
public class HelloRest {
    @GetMapping("/service1/getHello")
    public String getHello(){
        return "hello from service1";
    }
}
@Slf4j
@RestController
public class HelloRest {
    @GetMapping("/service2/getHello")
    public String getHello(){
        return "hello from service2";
    }
}

确保两个子项目都能正常运行后再进行下面的步骤。


执行maven的package命令,确保两个服务都生成了各自的jar,然后在各自的目录内新建Dockerfile:


FROM openjdk:8
EXPOSE 8080
ADD  target/service1-0.0.1-SNAPSHOT.jar /demo.jar
ENTRYPOINT ["java", "-jar", "demo.jar"]
FROM openjdk:8
EXPOSE 8081
ADD  target/service2-0.0.1-SNAPSHOT.jar /demo.jar
ENTRYPOINT ["java", "-jar", "demo.jar"]


然后在父工程目录下新建docker-compose.yml

version: "3.9"
services:
  service1:
    container_name: service1
    # 指定Dockerfile的目录
    build: ./service1
    ports:
      - "8080:8080"
  service2:
    container_name: service2
    # 指定Dockerfile的目录
    build: ./service2
    ports:
      - "8081:8081"

然后可以执行docker-compose up了,发现会新构建两个镜像demo_service1和demo_service2,同时创建两个容器并启动。


Creating service1 ... done
Creating service2 ... done
Attaching to service1, service2


2.4 单服务多容器使用


我们在一开始讲解docker-compose概念的时候,有提到过服务和容器之间的关系,即一个服务可以有多个容器,但是在上面的例子中,我们都是一个服务一个容器的,那么想要实现一个服务启动多个容器该怎么操作呢?


我们还是拿2.1节的例子作为演示,只要修改docker-compose.yml文件的内容:


version: "3.9"
services:
  myapp:
    build: .
    ports:
      - "8080"

我们把container_name: myapp去掉了,因为容器的名称要求是唯一的,如果指定了名字,那么哪个容器叫这个名字呢?就不好区分了,去掉后,多个容器会使用工程名+服务名+数字进行自动命名。


还有,需要把端口也改造为只指定容器的端口,不要指定host的端口,这样会自动绑定host上未使用的随机端口。其实如果Dockerfile中指定了暴露的端口,此处也可以不需要ports设置了。


到此,设置完毕,执行启动命令 docker-compose up --scale myapp=2,就会启动一个服务的两个容器实例。


[root@wlidc ~]# docker-compose up --scale myapp=2
Creating network "myapp_default" with the default driver
Creating myapp_myapp_1 ... done
Creating myapp_myapp_2 ... done
Attaching to myapp_myapp_2, myapp_myapp_1
...
[root@wlidc ~]# docker-compose ps
    Name             Command         State            Ports
--------------------------------------------------------------------
myapp_myapp_1   java -jar demo.jar   Up      0.0.0.0:53425->8080/tcp
myapp_myapp_2   java -jar demo.jar   Up      0.0.0.0:53424->8080/tcp

当然,这两个容器都必须实现负载均衡,后续我会出一篇Nginx的使用入门实战演示。

相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
24天前
|
监控 NoSQL 时序数据库
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
《docker高级篇(大厂进阶):7.Docker容器监控之CAdvisor+InfluxDB+Granfana》包括:原生命令、是什么、compose容器编排,一套带走
183 77
|
11天前
|
存储 Kubernetes 开发者
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
Docker 是一种开源的应用容器引擎,允许开发者将应用程序及其依赖打包成可移植的镜像,并在任何支持 Docker 的平台上运行。其核心概念包括镜像、容器和仓库。镜像是只读的文件系统,容器是镜像的运行实例,仓库用于存储和分发镜像。Kubernetes(k8s)则是容器集群管理系统,提供自动化部署、扩展和维护等功能,支持服务发现、负载均衡、自动伸缩等特性。两者结合使用,可以实现高效的容器化应用管理和运维。Docker 主要用于单主机上的容器管理,而 Kubernetes 则专注于跨多主机的容器编排与调度。尽管 k8s 逐渐减少了对 Docker 作为容器运行时的支持,但 Doc
72 5
容器化时代的领航者:Docker 和 Kubernetes 云原生时代的黄金搭档
|
8天前
|
存储 Kubernetes Docker
Kubernetes(k8s)和Docker Compose本质区别
理解它们的区别和各自的优势,有助于选择合适的工具来满足特定的项目需求。
60 19
|
16天前
|
Ubuntu 应用服务中间件 nginx
docker入门-快速学会docker
本文介绍了Docker的基本概念,包括镜像、容器、tar文件、Dockerfile和仓库,并通过实际操作演示了如何使用Docker。从拉取Nginx镜像、运行容器、修改容器内容、保存容器为新镜像,到使用Dockerfile构建自定义镜像,最后讲解了如何保存和恢复镜像。文中还推荐了一个在线实践平台Play with Docker,方便读者快速上手Docker。
72 5
docker入门-快速学会docker
|
21天前
|
关系型数据库 MySQL Docker
《docker高级篇(大厂进阶):5.Docker-compose容器编排》包括是什么能干嘛去哪下、Compose核心概念、Compose使用三个步骤、Compose常用命令、Compose编排微服务
《docker高级篇(大厂进阶):5.Docker-compose容器编排》包括是什么能干嘛去哪下、Compose核心概念、Compose使用三个步骤、Compose常用命令、Compose编排微服务
84 24
|
28天前
|
Kubernetes Cloud Native API
云原生入门:从理论到实践的探索之旅
本文旨在为初学者提供一个关于云原生技术的全面介绍,包括其定义、核心原则、关键技术组件以及如何将这些概念应用于实际项目中。我们将通过一个简易的代码示例,展示如何在云原生环境下部署一个简单的应用,从而帮助读者更好地理解云原生技术的实践意义和应用价值。
|
23天前
|
关系型数据库 MySQL Docker
《docker高级篇(大厂进阶):5.Docker-compose容器编排》包括是什么能干嘛去哪下、Compose核心概念、Compose使用三个步骤、Compose常用命令、Compose编排微服务
《docker高级篇(大厂进阶):5.Docker-compose容器编排》包括是什么能干嘛去哪下、Compose核心概念、Compose使用三个步骤、Compose常用命令、Compose编排微服务
107 6
|
30天前
|
运维 Cloud Native 开发者
云原生技术入门与实践
在云计算的浪潮中,云原生技术以其独特的优势和魅力吸引了越来越多的开发者和企业。本文将从云原生技术的基本概念、核心组件以及实际应用三个方面进行详细介绍,帮助读者更好地理解和掌握这一新兴技术。同时,文章还将分享一些实际案例和经验教训,让读者能够更深入地了解云原生技术的应用场景和发展趋势。
41 5
|
2月前
|
Kubernetes Cloud Native 开发者
云原生入门:从容器到微服务
本文将带你走进云原生的世界,从容器技术开始,逐步深入到微服务架构。我们将通过实际代码示例,展示如何利用云原生技术构建和部署应用。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的信息和启示。
|
30天前
|
运维 Cloud Native 持续交付
深入理解云原生架构及其在现代企业中的应用
随着数字化转型的浪潮席卷全球,企业正面临着前所未有的挑战与机遇。云计算技术的迅猛发展,特别是云原生架构的兴起,正在重塑企业的IT基础设施和软件开发模式。本文将深入探讨云原生的核心概念、关键技术以及如何在企业中实施云原生策略,以实现更高效的资源利用和更快的市场响应速度。通过分析云原生架构的优势和面临的挑战,我们将揭示它如何助力企业在激烈的市场竞争中保持领先地位。