索引-mysql详解(三)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 索引-mysql详解(三)

上篇文章说了,mysql可以指定行格式,compactdynamic,他结构有变长字段长度列表,null值,头部和真实数据存储,compact真实数据会存一定量的页,后面指向页的页码,dynamic全部存的页码,char会根据字符集来变换存储,行溢出是65535个字节,其中null值占一个,数据长度占两个,所以实际65532个字节,也会根据不同字节来变换。Index页存储这标记是否删除,删除的数据会组成垃圾链表,也叫可重用链表,而页里的数据,会根据next_Records来组成链表方便查询,二分查找法查找不同组的槽点。

InnoDB & index页-mysql详解(二)


索引


首先我们明确下页分裂是什么呢,因为每页是16kb,这时候数据存满肯定会存到另一个页,每个新页并不是连续的,但下一页必须数据大于前一页,所以当后面的页数据小于前面页的时候,需要数据移动交换下,这个过程就是页分裂。


于是我们如何通过索引目录来查找呢,因为前面说了页分裂是从小打大排序好的,所以每个目录key都是最小的主键值,value则就是页码,通过key来查找对应的页码找到对应存储数据的页。


其实索引目录就是跟之前数据页一样的存储格式,之前records_type 0 代表普通数据,2 3代表最小记录和最大记录,而剩下的1是什么呢,就是我们存储的目录项记录页(索引页)。

目录记录页普通页除了records_type不同外,还有 普通页前面说了除了存储我们需要的真实数据外,还有头部信息等额外数据,以及最重要的roll_point指针和transaction_id,而目录记录页只有最小主键和对应的页码。


根节点:

当一个记录页不能存储所有的主键和页码的时候,这时候有多个记录页,于是就出现了最上面的根节点,而第二层就是非叶子节点或者叫内节点,而最下面一层存数据的就是叫叶子节点,或者叶节点。

这样的组成之后就是b+树。


聚簇索引:当使用记录主键为值大小进行记录和页的排序,组成一个单向链表,各个存放数据的页是双向链表,b+树叶子节点存储的是完整的记录数(包括隐藏列)。这种聚簇索引并不需要我们显式的来创建,innoDB会自动创建,索引即数据,数据即索引。

二级索引:当不能以主键为查询条件来进行搜索的时候,这时候该怎么办呢,当我们以其他列来建立索引,以其他列来排序组成单向链表,存放数据的页组成双向链表,这种b+树的叶子节点存放的不是所有的数据,存放的时候二级索引和主键,非叶子节点的数据也不再是主键+页号,而是列+页号。这时候 查不到我们需要的值怎么办,用查询到的主键来回表查询。

联合索引:每个记录页都是列+页码组成,联合索引是两个列以上,先按前面的列进行排序,如果一致,则按后面的列进行排序,本质上也是一个二级索引,如果是联合索引则只会建立一颗b+树,如果联合索引的两个列分开创建索引,则是两颗树。


前面我们说了非叶子节点(内节点)存放的是列+页码,但这样是不准确的,如果列的数值都相同,那么他就没有唯一性,于是内节点存储的还有主键值,通过三个值来确定唯一性。

前面说的都是innodb,那么,MyISAM中的索引如何存储的呢?


我们前面说了innodb的聚簇索引是索引即数据,但myISAM是不同的,他是把索引和数据分开存储,myISAM有两个文件,数据文件 和 索引文件,数据文件即是我们存储的真实数据等,索引则会存放在索引文件里,先通过索引找到对应的行号,再通过行号去找对应的记录,意味着myISAM都是需要回表查询的。


索引的代价:

空间上的代价:显而易见,每次创建索引都需要创建一颗b+树,每个b+树每个节点都是数据页,组成起来就是很大的存储空间。

时间上的代价:我们前面说了索引在叶子节点和内节点上都是排序好的,如果每次新增修改删除数据,必定会导致b+树的修改,并且修改过后,页面的回收,页面的分配,记录的位移重新排序都需要大量的时间,所以时间消耗巨大。


联合索引查询的时候,有最左原则,当我们查询的时候,只查询最左边的数据也是会走索引的,而且如果查询多条数据,只要都包含在联合索引里,即使查询的时候顺序是乱的,查询优化器也会按照最左原则来优化查询。


联合索引范围查找的时候,最左边的列是可以使用索引查询的,但如果第二个索引需要使用到的话,最左边的列则不可以使用范围查询,需要精确值,因为只有相同的值才可以之后再排序。


1排序的时候也必须建立索引来排序,如果没有建立索引的排序这时候就属于filesort,文件排序,这时候是非常缓慢的。

2联合索引列的排序必须一致,不能一个列asc一个列desc

3并且排序的时候不能用不同索引的列。

所以因为排序是排好的,索引还可以用于分组。


回表查询的代价:

当我们查询二级索引的时候是顺序I/O会查询到多个不同的id,这些id会取查询聚簇索引,而且id是随机不是顺序的,于是查询聚簇索引的时候就是随机I/O,这时候性能就会下降很多,所以在有的时候,如果回表的查询记录数据太多,这时候mysql优化器会选择全表查询都不会走索引查。


当我们控制数量的时候,比如加个limit10,这时候就会更高级别走索引查询,同样的道理适用于排序,当后面加个limit,这时候会走索引。


如何完全不回表,当我们查询的列只有索引的时候,这时候就不需要再去查询聚簇索引里的其他值,这时候就属于覆盖索引,虽然查询的是二级索引的b+树,但是并不需要回表查询。

列的基数,当一个列都是重复的值,索引的排序没有效果,列的基数太小,则创建索引没有意义,所以创建索引选列基数大的。


自增主键的重要性:我们插入数据是按顺序在b+树排序好的,如果在中间插入一条数据,意味着重新排序和页分裂,意味着性能损耗,这时候自增主键保证新增的数据在后面。


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
2月前
|
存储 SQL 关系型数据库
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
mysql底层原理:索引、慢查询、 sql优化、事务、隔离级别、MVCC、redolog、undolog(图解+秒懂+史上最全)
|
2月前
|
存储 关系型数据库 MySQL
MySQL数据库索引的数据结构?
MySQL中默认使用B+tree索引,它是一种多路平衡搜索树,具有树高较低、检索速度快的特点。所有数据存储在叶子节点,非叶子节点仅作索引,且叶子节点形成双向链表,便于区间查询。
92 4
|
4月前
|
存储 关系型数据库 MySQL
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
阿里面试:MySQL 一个表最多 加几个索引? 6个?64个?还是多少?
|
6月前
|
关系型数据库 MySQL 数据库
Mysql的索引
MYSQL索引主要有 : 单列索引 , 组合索引和空间索引 , 用的比较多的就是单列索引和组合索引 , 空间索引我这边没有用到过 单列索引 : 在MYSQL数据库表的某一列上面创建的索引叫单列索引 , 单列索引又分为 ● 普通索引:MySQL中基本索引类型,没有什么限制,允许在定义索引的列中插入重复值和空值,纯粹为了查询数据更快一点。 ● 唯一索引:索引列中的值必须是唯一的,但是允许为空值 ● 主键索引:是一种特殊的唯一索引,不允许有空值 ● 全文索引: 只有在MyISAM引擎、InnoDB(5.6以后)上才能使⽤用,而且只能在CHAR,VARCHAR,TEXT类型字段上使⽤用全⽂文索引。
|
2月前
|
存储 SQL 关系型数据库
MySQL 核心知识与索引优化全解析
本文系统梳理了 MySQL 的核心知识与索引优化策略。在基础概念部分,阐述了 char 与 varchar 在存储方式和性能上的差异,以及事务的 ACID 特性、并发事务问题及对应的隔离级别(MySQL 默认 REPEATABLE READ)。 索引基础部分,详解了 InnoDB 默认的 B+tree 索引结构(多路平衡树、叶子节点存数据、双向链表支持区间查询),区分了聚簇索引(数据与索引共存,唯一)和二级索引(数据与索引分离,多个),解释了回表查询的概念及优化方法,并分析了 B+tree 作为索引结构的优势(树高低、效率稳、支持区间查询)。 索引优化部分,列出了索引创建的六大原则
|
3月前
|
存储 关系型数据库 MySQL
MySQL覆盖索引解释
总之,覆盖索引就像是图书馆中那些使得搜索变得极为迅速和简单的工具,一旦正确使用,就会让你的数据库查询飞快而轻便。让数据检索就像是读者在图书目录中以最快速度找到所需信息一样简便。这样的效率和速度,让覆盖索引成为数据库优化师傅们手中的尚方宝剑,既能够提升性能,又能够保持系统的整洁高效。
110 9
|
4月前
|
机器学习/深度学习 关系型数据库 MySQL
对比MySQL全文索引与常规索引的互异性
现在,你或许明白了这两种索引的差异,但任何技术决策都不应仅仅基于理论之上。你可以创建你的数据库实验环境,尝试不同类型的索引,看看它们如何影响性能,感受它们真实的力量。只有这样,你才能熟悉它们,掌握什么时候使用全文索引,什么时候使用常规索引,以适应复杂多变的业务需求。
102 12
|
8月前
|
存储 关系型数据库 MySQL
MySQL索引学习笔记
本文深入探讨了MySQL数据库中慢查询分析的关键概念和技术手段。
576 81
|
5月前
|
SQL 存储 关系型数据库
MySQL选错索引了怎么办?
本文探讨了MySQL中因索引选择不当导致查询性能下降的问题。通过创建包含10万行数据的表并插入数据,分析了一条简单SQL语句在不同场景下的执行情况。实验表明,当数据频繁更新时,MySQL可能因统计信息不准确而选错索引,导致全表扫描。文章深入解析了优化器判断扫描行数的机制,指出基数统计误差是主要原因,并提供了通过`analyze table`重新统计索引信息的解决方法。
134 3
|
6月前
|
自然语言处理 关系型数据库 MySQL
MySQL索引有哪些类型?
● 普通索引:最基本的索引,没有任何限制。 ● 唯一索引:索引列的值必须唯一,但可以有空值。可以创建组合索引,则列值的组合必须唯一。 ● 主键索引:是特殊的唯一索引,不可以有空值,且表中只存在一个该值。 ● 组合索引:多列值组成一个索引,用于组合搜索,效率高于索引合并。 ● 全文索引:对文本的内容进行分词,进行搜索。

推荐镜像

更多