分布式id的生成策略4种方式

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 分布式id的生成策略4种方式

1.uuid


采用uuid方式自增,不过有缺点:


1.太长


2.没办法排序


2.redis(产生自增的需要)


原理:


redis是单线程的,所以可以的incr方式产生id


代码展示


1dc618a0ed9580ce8bfa6facb208c08f.png


缺点


主键的生成需要访问redis,对redis有依赖


3.Oracle的方式


oracle数据库有序列,可以实现到


缺点:


只有oracle数据库才能使用。


4.程序自己写算法


推荐一个算法呢,推特的雪花算法:

5d4c6812c8535adbb050f4ddf2e1bce8.png


代码展示


IdWorker


import java.lang.management.ManagementFactory;
import java.net.InetAddress;
import java.net.NetworkInterface;
/**
 * <p>名称:IdWorker.java</p>
 * <p>描述:分布式自增长ID</p>
 * <pre>
 *     Twitter的 Snowflake JAVA实现方案
 * </pre>
 * 核心代码为其IdWorker这个类实现,其原理结构如下,我分别用一个0表示一位,用—分割开部分的作用:
 * 1||0---0000000000 0000000000 0000000000 0000000000 0 --- 00000 ---00000 ---000000000000
 * 在上面的字符串中,第一位为未使用(实际上也可作为long的符号位),接下来的41位为毫秒级时间,
 * 然后5位datacenter标识位,5位机器ID(并不算标识符,实际是为线程标识),
 * 然后12位该毫秒内的当前毫秒内的计数,加起来刚好64位,为一个Long型。
 * 这样的好处是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由datacenter和机器ID作区分),
 * 并且效率较高,经测试,snowflake每秒能够产生26万ID左右,完全满足需要。
 * <p>
 * 64位ID (42(毫秒)+5(机器ID)+5(业务编码)+12(重复累加))
 *
 * @author Polim
 */
public class IdWorker {
    // 时间起始标记点,作为基准,一般取系统的最近时间(一旦确定不能变动)
    private final static long twepoch = 1288834974657L;
    // 机器标识位数
    private final static long workerIdBits = 5L;
    // 数据中心标识位数
    private final static long datacenterIdBits = 5L;
    // 机器ID最大值
    private final static long maxWorkerId = -1L ^ (-1L << workerIdBits);
    // 数据中心ID最大值
    private final static long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
    // 毫秒内自增位
    private final static long sequenceBits = 12L;
    // 机器ID偏左移12位
    private final static long workerIdShift = sequenceBits;
    // 数据中心ID左移17位
    private final static long datacenterIdShift = sequenceBits + workerIdBits;
    // 时间毫秒左移22位
    private final static long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
    private final static long sequenceMask = -1L ^ (-1L << sequenceBits);
    /* 上次生产id时间戳 */
    private static long lastTimestamp = -1L;
    // 0,并发控制
    private long sequence = 0L;
    private final long workerId;
    // 数据标识id部分
    private final long datacenterId;
    public IdWorker(){
        this.datacenterId = getDatacenterId(maxDatacenterId);
        this.workerId = getMaxWorkerId(datacenterId, maxWorkerId);
    }
    /**
     * @param workerId
     *            工作机器ID
     * @param datacenterId
     *            序列号
     */
    public IdWorker(long workerId, long datacenterId) {
        if (workerId > maxWorkerId || workerId < 0) {
            throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId));
        }
        if (datacenterId > maxDatacenterId || datacenterId < 0) {
            throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId));
        }
        this.workerId = workerId;
        this.datacenterId = datacenterId;
    }
    /**
     * 获取下一个ID
     *
     * @return
     */
    public synchronized long nextId() {
        long timestamp = timeGen();
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format("Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
        if (lastTimestamp == timestamp) {
            // 当前毫秒内,则+1
            sequence = (sequence + 1) & sequenceMask;
            if (sequence == 0) {
                // 当前毫秒内计数满了,则等待下一秒
                timestamp = tilNextMillis(lastTimestamp);
            }
        } else {
            sequence = 0L;
        }
        lastTimestamp = timestamp;
        // ID偏移组合生成最终的ID,并返回ID
        long nextId = ((timestamp - twepoch) << timestampLeftShift)
                | (datacenterId << datacenterIdShift)
                | (workerId << workerIdShift) | sequence;
        return nextId;
    }
    private long tilNextMillis(final long lastTimestamp) {
        long timestamp = this.timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = this.timeGen();
        }
        return timestamp;
    }
    private long timeGen() {
        return System.currentTimeMillis();
    }
    /**
     * <p>
     * 获取 maxWorkerId
     * </p>
     */
    protected static long getMaxWorkerId(long datacenterId, long maxWorkerId) {
        StringBuffer mpid = new StringBuffer();
        mpid.append(datacenterId);
        String name = ManagementFactory.getRuntimeMXBean().getName();
        if (!name.isEmpty()) {
         /*
          * GET jvmPid
          */
            mpid.append(name.split("@")[0]);
        }
      /*
       * MAC + PID 的 hashcode 获取16个低位
       */
        return (mpid.toString().hashCode() & 0xffff) % (maxWorkerId + 1);
    }
    /**
     * <p>
     * 数据标识id部分
     * </p>
     */
    protected static long getDatacenterId(long maxDatacenterId) {
        long id = 0L;
        try {
            InetAddress ip = InetAddress.getLocalHost();
            NetworkInterface network = NetworkInterface.getByInetAddress(ip);
            if (network == null) {
                id = 1L;
            } else {
                byte[] mac = network.getHardwareAddress();
                id = ((0x000000FF & (long) mac[mac.length - 1])
                        | (0x0000FF00 & (((long) mac[mac.length - 2]) << 8))) >> 6;
                id = id % (maxDatacenterId + 1);
            }
        } catch (Exception e) {
            System.out.println(" getDatacenterId: " + e.getMessage());
        }
        return id;
    }
    }


使用


46a9d80a6e05e4e3b19d57a0ee70bcdf.png



相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
3月前
|
算法 Go
[go 面试] 雪花算法与分布式ID生成
[go 面试] 雪花算法与分布式ID生成
|
8天前
|
算法 关系型数据库 MySQL
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
在分布式系统中,确保每个节点生成的 ID 唯一且高效至关重要。Snowflake 算法由 Twitter 开发,通过 64 位 long 型数字生成全局唯一 ID,包括 1 位标识位、41 位时间戳、10 位机器 ID 和 12 位序列号。该算法具备全局唯一性、递增性、高可用性和高性能,适用于高并发场景,如电商促销时的大量订单生成。本文介绍了使用 Go 语言的 `bwmarrin/snowflake` 和 `sony/sonyflake` 库实现 Snowflake 算法的方法。
21 1
分布式唯一ID生成:深入理解Snowflake算法在Go中的实现
|
22天前
|
NoSQL 算法 关系型数据库
分布式 ID 详解 ( 5大分布式 ID 生成方案 )
本文详解分布式全局唯一ID及其5种实现方案,关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
分布式 ID 详解 ( 5大分布式 ID 生成方案 )
|
1月前
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
100 0
|
4月前
|
canal 缓存 NoSQL
Redis常见面试题(一):Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;先删除缓存还是先修改数据库,双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
Redis常见面试题(一):Redis使用场景,缓存、分布式锁;缓存穿透、缓存击穿、缓存雪崩;双写一致,Canal,Redis持久化,数据过期策略,数据淘汰策略
|
3月前
|
机器学习/深度学习 资源调度 PyTorch
面向大规模分布式训练的资源调度与优化策略
【8月更文第15天】随着深度学习模型的复杂度不断提高,对计算资源的需求也日益增长。为了加速训练过程并降低运行成本,高效的资源调度和优化策略变得至关重要。本文将探讨在大规模分布式训练场景下如何有效地进行资源调度,并通过具体的代码示例来展示这些策略的实际应用。
387 1
|
3月前
|
存储 负载均衡 中间件
构建可扩展的分布式数据库:技术策略与实践
【8月更文挑战第3天】构建可扩展的分布式数据库是一个复杂而具有挑战性的任务。通过采用数据分片、复制与一致性模型、分布式事务管理和负载均衡与自动扩展等关键技术策略,并合理设计节点、架构模式和网络拓扑等关键组件,可以构建出高可用性、高性能和可扩展的分布式数据库系统。然而,在实际应用中还需要注意解决数据一致性、故障恢复与容错性以及分布式事务的复杂性等挑战。随着技术的不断发展和创新,相信分布式数据库系统将在未来发挥更加重要的作用。
|
4月前
|
缓存 自然语言处理 负载均衡
理解大模型在分布式系统中的应用和优化策略
理解大模型在分布式系统中的应用和优化策略
|
4月前
|
存储 NoSQL Java
通用快照方案问题之通过Sleuth进行耗时分析和链路优化如何解决
通用快照方案问题之通过Sleuth进行耗时分析和链路优化如何解决
45 0
|
4月前
|
消息中间件 Java Nacos
通用快照方案问题之通过Spring Cloud实现配置的自动更新如何解决
通用快照方案问题之通过Spring Cloud实现配置的自动更新如何解决
77 0

热门文章

最新文章

下一篇
无影云桌面