Python 零基础入门数据分析实战之数据集应用

简介: 本节选用的是 Python 的第三方库 seaborn 自带的数据集,该小费数据集为餐饮行业收集的数据,其中 total_bill 为消费总金额、tip 为小费金额、sex 为顾客性别、smoker 为顾客是否吸烟、day 为消费的星期、time 为聚餐的时间段、size 为聚餐人数。

image.png

一、数据来源

本节选用的是 Python 的第三方库 seaborn 自带的数据集,该小费数据集为餐饮行业收集的数据,其中 total_bill 为消费总金额、tip 为小费金额、sex 为顾客性别、smoker 为顾客是否吸烟、day 为消费的星期、time 为聚餐的时间段、size 为聚餐人数。

import numpy as np 
from pandas import Series,DataFrame 
import pandas as pd 
import seaborn as sns    #导入seaborn库 
tips=sns.load_dataset('tips')  #seaborn库自带的数据集 
tips.head() 
AI 代码解读

image.png

二、问题探索二、问题探索

  • 小费金额与消费总金额是否存在相关性?
  • 性别、是否吸烟、星期几、聚餐人数和小费金额是否有一定的关联?
  • 小费金额占小费总金额的百分比是否服从正态分布?

三、数据清洗

tips.shape #数据集的维度 
AI 代码解读

(244,7)

共有 244 条数据,7 列。

tips.describe() #描述统计 
AI 代码解读

image.png

描述统计结果如上所示。

tips.info() #查看缺失值信息 
AI 代码解读

此例无缺失值。

四、数据探索

tips.plot(kind='scatter',x='total_bill',y='tip') #绘制散点图 
AI 代码解读

由图可看出,小费金额与消费总金额存在正相关性。

import numpy as np 
from pandas import Series,DataFrame 
import pandas as pd 
import seaborn as sns   #导入seaborn库 
tips=sns.load_dataset('tips')#seaborn库自带的数据集 
tips.head() 
AI 代码解读

3.0896178343949052

female_tip = tips[tips['sex'] == 'Female']['tip'].mean() #女性平均消费金额female_tip 
AI 代码解读

2.833448275862069

s = Series([male_tip,female_tip],index=['male','female']) 
s 
AI 代码解读

male 3.089618

female 2.833448

dtype: float64

s.plot(kind='bar') #男女平均小费柱状图 
AI 代码解读

image.png

由图可看出,女性小费金额小于男性小费金额。

sun_tip = tips[tips['day'] == 'Sun']['tip'].mean() 
sat_tip = tips[tips['day'] == 'Sat']['tip'].mean() 
thur_tip = tips[tips['day'] == 'Thur']['tip'].mean() 
fri_tip = tips[tips['day'] == 'Fri']['tip'].mean()#各个日期的平均小费值 
s = Series([thur_tip,fri_tip,sat_tip,sun_tip],index=['Thur','Fri','Sat','Sun']) 
s 
AI 代码解读

image.png

s.plot(kind='bar') #日期平均小费柱状图 
AI 代码解读

image.png

由图可看出,周六、周日的小费比周四、周五的小费高。

tips['percent_tip'] = tips['tip']/(tips['total_bill']+tips['tip']) 
tips.head(10) #小费所占百分比 
AI 代码解读

image.png

tips['percent_tip'].hist(bins=50)#小费百分比直方图 
AI 代码解读

image.png

由图可看出,小费金额占小费总金额的百分比基本服从正态分布。

相关文章
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化和调试技巧,涵盖使用内置函数、列表推导式、生成器、`cProfile`、`numpy`等优化手段,以及`print`、`assert`、`pdb`和`logging`等调试方法。通过实战项目如优化排序算法和日志记录的Web爬虫,帮助你编写高效稳定的Python程序。
Python 编程基础与实战:从入门到精通
本文介绍Python编程语言,涵盖基础语法、进阶特性及实战项目。从变量、数据类型、运算符、控制结构到函数、列表、字典等基础知识,再到列表推导式、生成器、装饰器和面向对象编程等高级特性,逐步深入。同时,通过简单计算器和Web爬虫两个实战项目,帮助读者掌握Python的应用技巧。最后,提供进一步学习资源,助你在Python编程领域不断进步。
Python 高级编程与实战:深入理解面向对象与并发编程
本文深入探讨Python的高级特性,涵盖面向对象编程(继承、多态、特殊方法、类与实例属性)、异常处理(try-except、finally)和并发编程(多线程、多进程、异步编程)。通过实战项目如聊天服务器和异步文件下载器,帮助读者掌握这些技术,编写更复杂高效的Python程序。
Python 高级编程与实战:深入理解数据科学与机器学习
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化和调试技巧。本文将深入探讨 Python 在数据科学和机器学习中的应用,并通过实战项目帮助你掌握这些技术。
Python高级编程与实战:深入理解函数式编程与元编程
本文深入介绍Python的函数式编程和元编程。函数式编程强调纯函数与不可变数据,涵盖`map`、`filter`、`reduce`及`lambda`的使用;元编程则涉及装饰器、元类和动态属性等内容。通过实战项目如日志记录器和配置管理器,帮助读者掌握这些高级技术,编写更灵活高效的Python程序。
Python 高级编程与实战:深入理解并发编程与分布式系统
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发、API 设计、网络编程和异步IO。本文将深入探讨 Python 在并发编程和分布式系统中的应用,并通过实战项目帮助你掌握这些技术。
Python 高级编程与实战:深入理解网络编程与异步IO
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧、数据科学、机器学习、Web 开发和 API 设计。本文将深入探讨 Python 在网络编程和异步IO中的应用,并通过实战项目帮助你掌握这些技术。
Python 高级编程与实战:深入理解 Web 开发与 API 设计
在前几篇文章中,我们探讨了 Python 的基础语法、面向对象编程、函数式编程、元编程、性能优化、调试技巧以及数据科学和机器学习。本文将深入探讨 Python 在 Web 开发和 API 设计中的应用,并通过实战项目帮助你掌握这些技术。
基于 DIFY 的自动化数据分析实战
本文介绍如何使用DIFY搭建数据分析自动化流程,实现从输入需求到查询数据库、LLM分析再到可视化输出的全流程。基于经典的employees数据集和DIFY云端环境,通过LLM-SQL解析、SQL执行、LLM数据分析及ECharts可视化等模块,高效完成数据分析任务。此方案适用于人力资源分析、薪酬管理等数据密集型业务,显著提升效率并降低成本。
840 5
云数据库实战:基于阿里云RDS的Python应用开发与优化
在互联网时代,数据驱动的应用已成为企业竞争力的核心。阿里云RDS为开发者提供稳定高效的数据库托管服务,支持多种数据库引擎,具备自动化管理、高可用性和弹性扩展等优势。本文通过Python应用案例,从零开始搭建基于阿里云RDS的数据库应用,详细演示连接、CRUD操作及性能优化与安全管理实践,帮助读者快速上手并提升应用性能。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等