SPARK中的wholeStageCodegen全代码生成--以aggregate代码生成为例说起(10)

简介: SPARK中的wholeStageCodegen全代码生成--以aggregate代码生成为例说起(10)

背景


本文基于 SPARK 3.3.0

从一个unit test来探究SPARK Codegen的逻辑,

  test("SortAggregate should be included in WholeStageCodegen") {
    val df = spark.range(10).agg(max(col("id")), avg(col("id")))
    withSQLConf("spark.sql.test.forceApplySortAggregate" -> "true") {
      val plan = df.queryExecution.executedPlan
      assert(plan.exists(p =>
        p.isInstanceOf[WholeStageCodegenExec] &&
          p.asInstanceOf[WholeStageCodegenExec].child.isInstanceOf[SortAggregateExec]))
      assert(df.collect() === Array(Row(9, 4.5)))
    }
  }

该sql形成的执行计划第二部分的全代码生成部分如下:

WholeStageCodegen
*(2) SortAggregate(key=[], functions=[max(id#0L), avg(id#0L)], output=[max(id)#5L, avg(id)#6])
   InputAdapter
+- Exchange SinglePartition, ENSURE_REQUIREMENTS, [id=#13]


分析


第二阶段wholeStageCodegen

第二阶段的代码生成涉及到SortAggregateExec和ShuffleExchangeExec以及InputAdapter的produce和consume方法,这里一一来分析:

第二阶段wholeStageCodegen数据流如下:

 WholeStageCodegenExec      SortAggregateExec(Final)      InputAdapter       ShuffleExchangeExec        
  ====================================================================================
  -> execute()
      |
   doExecute() --------->   inputRDDs() -----------------> inputRDDs() -------> execute()
      |                                                                            |
   doCodeGen()                                                                  doExecute()     
      |                                                                            |
      +----------------->   produce()                                           ShuffledRowRDD
                              |
                           doProduce() 
                              |
                           doProduceWithoutKeys() -------> produce()
                                                              |
                                                          doProduce()
                                                              |
                           doConsume() <------------------- consume()
                              |
                           doConsumeWithoutKeys()
                              |并不是doConsumeWithoutKeys调用consume,而是由doProduceWithoutKeys调用
   doConsume()  <--------  consume()


SortAggregateExec(Final) 的inputRDDs()


val rdds = child.asInstanceOf[CodegenSupport].inputRDDs()

调用的是子类的inputRDDS,也就是SortAggregateExec的inputRDDS方法,最终调用到InputAdaptor的inputRDD方法:

  override def inputRDD: RDD[InternalRow] = child.execute()

,也就是调用的是ShuffleExchangeExecexecute方法

protected override def doExecute(): RDD[InternalRow] = {


// Returns the same ShuffleRowRDD if this plan is used by multiple plans.
if (cachedShuffleRDD == null) {
  cachedShuffleRDD = new ShuffledRowRDD(shuffleDependency, readMetrics)
}
cachedShuffleRDD
 ```
 这样整个链路就串联起来了。


相关文章
|
SQL 分布式计算 Spark
Spark中的WholeStageCodegenExec(全代码生成)
Spark中的WholeStageCodegenExec(全代码生成)
801 0
Spark中的WholeStageCodegenExec(全代码生成)
|
分布式计算 Spark
SPARK中的wholeStageCodegen全代码生成--GenerateUnsafeProjection.createCode说明
SPARK中的wholeStageCodegen全代码生成--GenerateUnsafeProjection.createCode说明
220 0
|
分布式计算 Java Spark
SPARK中的wholeStageCodegen全代码生成--以aggregate代码生成为例说起(3)
SPARK中的wholeStageCodegen全代码生成--以aggregate代码生成为例说起(3)
337 0
|
7月前
|
人工智能 分布式计算 大数据
大数据≠大样本:基于Spark的特征降维实战(提升10倍训练效率)
本文探讨了大数据场景下降维的核心问题与解决方案,重点分析了“维度灾难”对模型性能的影响及特征冗余的陷阱。通过数学证明与实际案例,揭示高维空间中样本稀疏性问题,并提出基于Spark的分布式降维技术选型与优化策略。文章详细展示了PCA在亿级用户画像中的应用,包括数据准备、核心实现与效果评估,同时深入探讨了协方差矩阵计算与特征值分解的并行优化方法。此外,还介绍了动态维度调整、非线性特征处理及降维与其他AI技术的协同效应,为生产环境提供了最佳实践指南。最终总结出降维的本质与工程实践原则,展望未来发展方向。
408 0
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
1025 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
10月前
|
存储 分布式计算 Hadoop
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
从“笨重大象”到“敏捷火花”:Hadoop与Spark的大数据技术进化之路
546 79
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
287 0
|
消息中间件 分布式计算 NoSQL
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
大数据-104 Spark Streaming Kafka Offset Scala实现Redis管理Offset并更新
283 0
|
消息中间件 存储 分布式计算
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
大数据-103 Spark Streaming Kafka Offset管理详解 Scala自定义Offset
332 0

热门文章

最新文章