【大厂真题实战】Java工程师 | 字节面试真题(一)

简介: 【大厂真题实战】Java工程师 | 字节面试真题(一)

一、ZJ25 头条校招


描述:


头条的2017校招开始了!为了这次校招,我们组织了一个规模宏大的出题团队,每个出题人都出了一些有趣的题目,而我们现在想把这些题目组合成若干场考试出来,在选题之前,我们对题目进行了盲审,并定出了每道题的难度系统。一场考试包含3道开放性题目,假设他们的难度从小到大分别为a,b,c,我们希望这3道题能满足下列条件:


a<=b<=c

b-a<=10

c-b<=10

所有出题人一共出了n道开放性题目。现在我们想把这n道题分布到若干场考试中(1场或多场,每道题都必须使用且只能用一次),然而由于上述条件的限制,可能有一些考试没法凑够3道题,因此出题人就需要多出一些适当难度的题目来让每场考试都达到要求,然而我们出题已经出得很累了,你能计算出我们最少还需要再出几道题吗?


输入描述:

输入的第一行包含一个整数n,表示目前已经出好的题目数量。

第二行给出每道题目的难度系数d1,d2,…,dn。

数据范围


对于30%的数据,1 ≤ n,di ≤ 5;

对于100%的数据,1 ≤ n ≤ 10^5,1 ≤ di ≤ 100。

在样例中,一种可行的方案是添加2个难度分别为20和50的题目,这样可以组合成两场考试:(20 20 23)和(35,40,50)。


输出描述:

输出只包括一行,即所求的答案。


示例1

输入: 4

20 35 23 40

输出: 2


代码示例:


import java.io.*;
import java.util.*;
public class Main {
    private static int read(StreamTokenizer st) throws IOException{
        st.nextToken();
        return (int) st.nval;
    }
    public static void main(String[] args) throws IOException{
        StreamTokenizer st = new StreamTokenizer(new BufferedReader(new InputStreamReader(System.in)));
        //读取N
        int N = read(st);
        //读取数组
        int[] arr = new int[N];
        for(int i=0; i<N; i++){
            arr[i] = read(st);
        }
        //数组排序
        Arrays.sort(arr);
        //贪心
        int pre=-1, size=0, cnt=0;
        int idx = 0;
        while(idx<N){
            if(size==0){
                pre = arr[idx++];
                size=1;
            }else if(size==1){
                int gap=arr[idx]-pre;
                if(gap>10 && gap<=20){
                    cnt++;
                    size=0;
                    idx++;
                }else if(gap>20){
                    cnt += 2;
                    size=1;
                    pre = arr[idx++];
                }else{
                    pre = arr[idx++];
                    size = 2;
                }
            }else{
                int gap=arr[idx]-pre;
                if(gap>10){
                    cnt++;
                    pre = arr[idx++];
                    size=1;
                }else{
                    size=0;
                    idx++;
                }
            }
        }
        if(size==1){
            cnt +=2;
        }else if(size==2){
            cnt +=1;
        }
        System.out.println(cnt);
    }
}


ZJ19 万万没想到之抓捕孔连顺


描述:

我叫王大锤,是一名特工。我刚刚接到任务:在字节跳动大街进行埋伏,抓捕恐怖分子孔连顺。和我一起行动的还有另外两名特工,我提议


我们在字节跳动大街的 N 个建筑中选定 3 个埋伏地点。

为了相互照应,我们决定相距最远的两名特工间的距离不超过 D 。

我特喵是个天才! 经过精密的计算,我们从X种可行的埋伏方案中选择了一种。这个方案万无一失,颤抖吧,孔连顺!

……

万万没想到,计划还是失败了,孔连顺化妆成小龙女,混在cosplay的队伍中逃出了字节跳动大街。只怪他的伪装太成功了,就是杨过本人来了也发现不了的!


请听题:给定 N(可选作为埋伏点的建筑物数)、 D(相距最远的两名特工间的距离的最大值)以及可选建筑的坐标,计算在这次行动中,大锤的小队有多少种埋伏选择。

注意:


两个特工不能埋伏在同一地点

三个特工是等价的:即同样的位置组合( A , B , C ) 只算一种埋伏方法,不能因“特工之间互换位置”而重复使用

数据范围: 0 < n,d>= 10^6


输入描述:

第一行包含空格分隔的两个数字 N和D(1 ≤ N ≤ 1000000; 1 ≤ D ≤ 1000000)


第二行包含N个建筑物的的位置,每个位置用一个整数(取值区间为[0, 1000000])表示,从小到大排列(将字节跳动大街看做一条数轴)


输出描述:

一个数字,表示不同埋伏方案的数量。结果可能溢出,请对 99997867 取模


示例1

输入:4 3

1 2 3 4

输出:4

说明:

可选方案 (1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)


示例2

输入:5 19

1 10 20 30 50

输出:1

说明:

可选方案 (1, 10, 20)


示例3

输入:2 100

1 102

输出:0

说明:

无可选方案


代码示例:


import java.util.*;
public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        while (sc.hasNext()) {
            int n = sc.nextInt();
            int d = sc.nextInt();
            int[] locations = new int[n];
            for (int i = 0; i < n; i++) {
                locations[i] = sc.nextInt();
            }
            long count = dsp(locations, n, d);
            System.out.println(count);
        }
    }
    public static long dsp(int[] locations, int n, int d) {
        int left = 0, right = 2;
        long count = 0;
        int mod = 99997867;
        while (right < n) {
            if (locations[right] - locations[left] > d) 
                left++;
            else if (right - left < 2) 
                right++;
            else {
                long num = right - left;   // 第二位和第三位之间的最远距离
                count += num * (num - 1) / 2L; // 第二位和第三位可以排列组合的数量
                right++;
            }
        }
        count %= mod;
        return count;
    }
}


目录
相关文章
|
9天前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
33 2
|
1月前
|
存储 Java 开发者
Java Map实战:用HashMap和TreeMap轻松解决复杂数据结构问题!
【10月更文挑战第17天】本文深入探讨了Java中HashMap和TreeMap两种Map类型的特性和应用场景。HashMap基于哈希表实现,支持高效的数据操作且允许键值为null;TreeMap基于红黑树实现,支持自然排序或自定义排序,确保元素有序。文章通过具体示例展示了两者的实战应用,帮助开发者根据实际需求选择合适的数据结构,提高开发效率。
61 2
|
14天前
|
存储 算法 Java
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
本文详解自旋锁的概念、优缺点、使用场景及Java实现。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:什么是自旋锁?Java 实现自旋锁的原理?
|
19天前
|
存储 缓存 Oracle
Java I/O流面试之道
NIO的出现在于提高IO的速度,它相比传统的输入/输出流速度更快。NIO通过管道Channel和缓冲器Buffer来处理数据,可以把管道当成一个矿藏,缓冲器就是矿藏里的卡车。程序通过管道里的缓冲器进行数据交互,而不直接处理数据。程序要么从缓冲器获取数据,要么输入数据到缓冲器。
Java I/O流面试之道
|
5天前
|
安全 Java 开发者
Java 多线程并发控制:深入理解与实战应用
《Java多线程并发控制:深入理解与实战应用》一书详细解析了Java多线程编程的核心概念、并发控制技术及其实战技巧,适合Java开发者深入学习和实践参考。
|
9天前
|
存储 网络协议 安全
30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场
本文精选了 30 道初级网络工程师面试题,涵盖 OSI 模型、TCP/IP 协议栈、IP 地址、子网掩码、VLAN、STP、DHCP、DNS、防火墙、NAT、VPN 等基础知识和技术,帮助小白们充分准备面试,顺利踏入职场。
28 2
|
15天前
|
存储 缓存 Java
大厂面试必看!Java基本数据类型和包装类的那些坑
本文介绍了Java中的基本数据类型和包装类,包括整数类型、浮点数类型、字符类型和布尔类型。详细讲解了每种类型的特性和应用场景,并探讨了包装类的引入原因、装箱与拆箱机制以及缓存机制。最后总结了面试中常见的相关考点,帮助读者更好地理解和应对面试中的问题。
41 4
|
16天前
|
存储 Java 程序员
Java基础的灵魂——Object类方法详解(社招面试不踩坑)
本文介绍了Java中`Object`类的几个重要方法,包括`toString`、`equals`、`hashCode`、`finalize`、`clone`、`getClass`、`notify`和`wait`。这些方法是面试中的常考点,掌握它们有助于理解Java对象的行为和实现多线程编程。作者通过具体示例和应用场景,详细解析了每个方法的作用和重写技巧,帮助读者更好地应对面试和技术开发。
57 4
|
1月前
|
存储 消息中间件 安全
JUC组件实战:实现RRPC(Java与硬件通过MQTT的同步通信)
【10月更文挑战第9天】本文介绍了如何利用JUC组件实现Java服务与硬件通过MQTT的同步通信(RRPC)。通过模拟MQTT通信流程,使用`LinkedBlockingQueue`作为消息队列,详细讲解了消息发送、接收及响应的同步处理机制,包括任务超时处理和内存泄漏的预防措施。文中还提供了具体的类设计和方法实现,帮助理解同步通信的内部工作原理。
JUC组件实战:实现RRPC(Java与硬件通过MQTT的同步通信)
|
28天前
|
存储 Java 程序员
Java面试加分点!一文读懂HashMap底层实现与扩容机制
本文详细解析了Java中经典的HashMap数据结构,包括其底层实现、扩容机制、put和查找过程、哈希函数以及JDK 1.7与1.8的差异。通过数组、链表和红黑树的组合,HashMap实现了高效的键值对存储与检索。文章还介绍了HashMap在不同版本中的优化,帮助读者更好地理解和应用这一重要工具。
54 5
下一篇
无影云桌面