【路径规划-机器人栅格地图】基于哈里斯鹰算法求解栅格地图路径规划及避障含Matlab源码

简介: 【路径规划-机器人栅格地图】基于哈里斯鹰算法求解栅格地图路径规划及避障含Matlab源码

 ✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

静态环境中的移动机器人全局路径规划是路径规划中的一个重要问题,本文采用哈里斯鹰解决移动机器人的路径规划.该方法首先采用栅格法环境建模,采用哈里斯鹰算法规划机器人路径,最后用MAT-LAB来实现算法,仿真后,观察路径,得出最终结果.

⛄ 部分代码

function [BestFitness, gbest, zz] = GWO(N, maxgen, X, fitness, lb, ub, dim, fobj)

%%

[bestfitness, bestindex] = sort(fitness);

gbest = X(bestindex(1), :);      % 群体最优极值

fitnessgbest = bestfitness(1);             % 种群最优适应度值

% 初始化alpha, beta和delta_pos

Alpha_pos = gbest;

Alpha_score = fitnessgbest;

Beta_pos = X(bestindex(2), :);

Beta_score = bestfitness(2);

Delta_pos = X(bestindex(3), :);

Delta_score = bestfitness(3);

%% 初始结果显示

disp(['初始位置:', num2str(gbest)]);

disp(['初始解:', num2str(fitnessgbest)]);

%% 迭代

for gen = 1:maxgen

%     a = aini-(aini-afin)*exp(gen/maxgen-1);     % a从2线性减小到0    

%      a = ainitial/(1+exp(mu*gen/maxgen-k));

    a=2-gen*(2/maxgen);     % a从2线性减小到0    

   % 更新包括omegas在内的种群的位置

   for i = 1:N

       S = X(i, :);

       for j = 1:dim

           r1 = rand();             % r1是[0,1]中的随机数

           r2 = rand();             % r2是[0,1]中的随机数

           A1 = 2*a*r1-a;        % 公式(4)

           C1 = 2*r2;               % 公式(5)

           D_alpha = abs(C1*Alpha_pos(j)-X(i, j));  % 公式(6)-第一部分

           X1 = Alpha_pos(j)-A1*D_alpha;   % 公式 (7)-第一部分

           

           r1 = rand();

           r2 = rand();

           A2 = 2*a*r1-a;         % 公式(4)

           C2 = 2*r2;                % 公式(5)

           D_beta = abs(C2*Beta_pos(j)-X(i, j));   % 公式(6)-第二部分

           X2 = Beta_pos(j)-A2*D_beta;       % 公式 (7)-第二部分

           

           r1 = rand();

           r2 = rand();

           A3 = 2*a*r1-a;        % 公式 (4)

           C3 = 2*r2;               % 公式 (5)

           D_delta = abs(C3*Delta_pos(j)-X(i, j)); % 公式(6)-第三部分

           X3 = Delta_pos(j)-A3*D_delta;      % 公式 (7)-第三部分

           

           X(i, j)=(X1+X2+X3)/3;       % 公式 (8)

       end

       % 边界处理

       X(i, X(i, :) > ub) = ub;

       X(i, X(i, :) < lb) = lb;

       % 判断

       fit = fobj(X(i, :));

       if fit < fitness(i)

           fitness(i) = fit;

       else

           X(i, :) = S;

       end

   end

   % 更新

   [bestfitness, bestindex] = sort(fitness);

   gbest = X(bestindex(1), :);           % 群体最优极值

   fitnessgbest = bestfitness(1);      % 种群最优适应度值

   % 初始化alpha, beta和delta_pos

   Alpha_pos = gbest;

   Alpha_score = fitnessgbest;

   Beta_pos = X(bestindex(2), :);

   Beta_score = bestfitness(2);

   Delta_pos = X(bestindex(3), :);

   Delta_score = bestfitness(3);

 

   %% 每一代群体最优值存入zz数组

   zz(gen) = Alpha_score;

   gbest = Alpha_pos;

   %% 显示每代优化结果

   display(['At iteration ', num2str(gen), ' the best fitness is ', num2str(zz(gen))]);

end

BestFitness = zz(end);

%% 最终结果显示

disp(['最优位置:', num2str(gbest)]);

disp(['最优解:', num2str(zz(end))]);

% %% 绘图

% figure;

% plot(zz, 'r', 'lineWidth', 2);          %  画出迭代图

% xlabel('迭代次数', 'fontsize', 12);

% ylabel('目标函数值', 'fontsize', 12);

⛄ 运行结果

image.gif编辑

⛄ 参考文献

[1]张涛, 张震. 基于混合算法的安防巡检机器人避障路径规划[J]. 电子测量技术, 2020, 43(13):5.

❤️ 关注我领取海量matlab电子书和数学建模资料

❤️部分理论引用网络文献,若有侵权联系博主删除


相关文章
|
6天前
|
传感器 算法 安全
机器人路径规划和避障算法matlab仿真,分别对比贪婪搜索,最安全距离,RPM以及RRT四种算法
本程序基于MATLAB 2022A实现机器人路径规划与避障仿真,对比贪婪搜索、最安全距离、RPM和RRT四种算法。通过地图模拟环境,输出各算法的路径规划结果,展示其在避障性能与路径优化方面的差异。代码包含核心路径搜索逻辑,并附有测试运行图示,适用于机器人路径规划研究与教学演示。
117 64
|
9天前
|
算法 调度
基于精英个体保留策略遗传优化的生产调度算法matlab仿真
本程序基于精英个体保留策略的遗传算法,实现生产调度优化。通过MATLAB仿真,输出收敛曲线与甘特图,直观展示调度结果与迭代过程。适用于复杂多约束生产环境,提升资源利用率与调度效率。
|
7天前
|
存储 算法 数据安全/隐私保护
基于FPGA的图像退化算法verilog实现,分别实现横向和纵向运动模糊,包括tb和MATLAB辅助验证
本项目基于FPGA实现图像运动模糊算法,包含横向与纵向模糊处理流程。使用Vivado 2019.2与MATLAB 2022A,通过一维卷积模拟点扩散函数,完成图像退化处理,并可在MATLAB中预览效果。
|
26天前
|
算法
基于BigBangBigCrunch优化(BBBC)的目标函数求解算法matlab仿真
本程序基于BigBang-BigCrunch优化算法(BBBC)实现目标函数求解的MATLAB仿真,具备良好的全局搜索与局部收敛能力。程序输出适应度收敛曲线及多变量变化曲线,展示算法迭代过程中的优化趋势。使用MATLAB 2022A运行,通过图形界面直观呈现“大爆炸”与“大坍缩”阶段在解空间中的演化过程,适用于启发式优化问题研究与教学演示。
|
27天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
|
1月前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的256QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容展示了基于GA(遗传算法)优化的256QAM概率星座整形(PCS)技术的研究与实现。通过Matlab仿真,分析了优化前后星座图和误码率(BER)的变化。256QAM采用非均匀概率分布(Maxwell-Boltzman分布)降低外圈星座点出现频率,减小平均功率并增加最小欧氏距离,从而提升传输性能。GA算法以BER为适应度函数,搜索最优整形参数v,显著降低误码率。核心程序实现了GA优化过程,包括种群初始化、选择、交叉、变异等步骤,并绘制了优化曲线。此研究有助于提高频谱效率和传输灵活性,适用于不同信道环境。
51 10
|
27天前
|
机器学习/深度学习 算法
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
|
1月前
|
算法
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。
|
1月前
|
算法 JavaScript 数据安全/隐私保护
基于遗传算法的64QAM星座图的最优概率整形matlab仿真,对比优化前后整形星座图和误码率
本内容主要探讨基于遗传算法(GA)优化的64QAM概率星座整形(PCS)技术。通过改变星座点出现的概率分布,使外圈点频率降低,从而减小平均功率、增加最小欧氏距离,提升传输性能。仿真使用Matlab2022a完成,展示了优化前后星座图与误码率对比,验证了整形增益及频谱效率提升效果。理论分析表明,Maxwell-Boltzman分布为最优概率分布,核心程序通过GA搜索最佳整形因子v,以蒙特卡罗方法估计误码率,最终实现低误码率优化目标。
33 1
|
4月前
|
人工智能 自然语言处理 机器人
9.9K star!大模型原生即时通信机器人平台,这个开源项目让AI对话更智能!
"😎高稳定、🧩支持插件、🦄多模态 - 大模型原生即时通信机器人平台"
134 0

热门文章

最新文章