【智能优化算法-灰狼算法】基于基于随机收敛因子和差分变异改进灰狼优化算法求解单目标优化问题附matlab代码

简介: 【智能优化算法-灰狼算法】基于基于随机收敛因子和差分变异改进灰狼优化算法求解单目标优化问题附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

针对基本灰狼优化算法在求解高维复杂优化问题时存在解精度低和易陷入局部最优的缺点,提出一种改进的灰狼优化算法.受粒子群优化算法的启发,设计一种收敛因子a随机动态调整策略以协调算法的全局勘探和局部开采能力;为了增强种群多样性和降低算法陷入局部最优的概率,受差分进化算法的启发,构建一种随机差分变异策略产生新个体.选取6个标准测试函数进行仿真实验.结果表明:在相同的适应度函数评价次数条件下,此算法在求解精度和收敛速度上均优于其他算法.

⛄ 部分代码

%___________________________________________________________________%

%  Grey Wold Optimizer (GWO) source codes version 1.0               %

%                                                                   %

%  Developed in MATLAB R2011b(7.13)                                 %

%                                                                   %

%  Author and programmer: Seyedali Mirjalili                        %

%                                                                   %

%         e-Mail: ali.mirjalili@gmail.com                           %

%                 seyedali.mirjalili@griffithuni.edu.au             %

%                                                                   %

%       Homepage: http://www.alimirjalili.com                       %

%                                                                   %

%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %

%               Grey Wolf Optimizer, Advances in Engineering        %

%               Software , in press,                                %

%               DOI: 10.1016/j.advengsoft.2013.12.007               %

%                                                                   %

%___________________________________________________________________%


% Grey Wolf Optimizer

function [Alpha_score,Alpha_pos,Convergence_curve]=GWO(SearchAgents_no,Max_iter,lb,ub,dim,fobj)


% initialize alpha, beta, and delta_pos

Alpha_pos=zeros(1,dim);

Alpha_score=inf; %change this to -inf for maximization problems


Beta_pos=zeros(1,dim);

Beta_score=inf; %change this to -inf for maximization problems


Delta_pos=zeros(1,dim);

Delta_score=inf; %change this to -inf for maximization problems


%Initialize the positions of search agents

Positions=initialization(SearchAgents_no,dim,ub,lb);


Convergence_curve=zeros(1,Max_iter);


l=0;% Loop counter


% Main loop

while l<Max_iter

   for i=1:size(Positions,1)  

       

      % Return back the search agents that go beyond the boundaries of the search space

       Flag4ub=Positions(i,:)>ub;

       Flag4lb=Positions(i,:)<lb;

       Positions(i,:)=(Positions(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;              

       

       % Calculate objective function for each search agent

       fitness=fobj(Positions(i,:));

       

       % Update Alpha, Beta, and Delta

       if fitness<Alpha_score

           Alpha_score=fitness; % Update alpha

           Alpha_pos=Positions(i,:);

       end

       

       if fitness>Alpha_score && fitness<Beta_score

           Beta_score=fitness; % Update beta

           Beta_pos=Positions(i,:);

       end

       

       if fitness>Alpha_score && fitness>Beta_score && fitness<Delta_score

           Delta_score=fitness; % Update delta

           Delta_pos=Positions(i,:);

       end

   end

   

   

   % a decreases linearly fron 2 to 0

    a=sin(((l*pi)/Max_iter)+pi/2)+1;

   % Update the Position of search agents including omegas

   for i=1:size(Positions,1)

       for j=1:size(Positions,2)    

                     

           r1=rand(); % r1 is a random number in [0,1]

           r2=rand(); % r2 is a random number in [0,1]

           

           A1=2*a*r1-a; % Equation (3.3)

           C1=2*r2; % Equation (3.4)

           

           D_alpha=abs(C1*Alpha_pos(j)-Positions(i,j)); % Equation (3.5)-part 1

           X1=Alpha_pos(j)-A1*D_alpha; % Equation (3.6)-part 1

                     

           r1=rand();

           r2=rand();

           

           A2=2*a*r1-a; % Equation (3.3)

           C2=2*r2; % Equation (3.4)

           

           D_beta=abs(C2*Beta_pos(j)-Positions(i,j)); % Equation (3.5)-part 2

           X2=Beta_pos(j)-A2*D_beta; % Equation (3.6)-part 2      

           

           r1=rand();

           r2=rand();

           

           A3=2*a*r1-a; % Equation (3.3)

           C3=2*r2; % Equation (3.4)

           

           D_delta=abs(C3*Delta_pos(j)-Positions(i,j)); % Equation (3.5)-part 3

           X3=Delta_pos(j)-A3*D_delta; % Equation (3.5)-part 3            

           

           Positions(i,j)=(X1+X2+X3)/3;% Equation (3.7)

           

       end

   end

   l=l+1;    

   Convergence_curve(l)=Alpha_score;

end





⛄ 运行结果

⛄ 参考文献

[1]徐松金, 龙文. 基于随机收敛因子和差分变异的改进灰狼优化算法[J]. 科学技术与工程, 2018, 18(23):5.

❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除


相关实践学习
部署高可用架构
本场景主要介绍如何使用云服务器ECS、负载均衡SLB、云数据库RDS和数据传输服务产品来部署多可用区高可用架构。
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
20天前
|
编解码 算法 定位技术
GEE时序——利用sentinel-2(哨兵-2)数据进行地表物候学分析(时间序列平滑法估算和非平滑算法代码)
GEE时序——利用sentinel-2(哨兵-2)数据进行地表物候学分析(时间序列平滑法估算和非平滑算法代码)
29 3
|
2月前
|
算法 计算机视觉 异构计算
基于FPGA的图像差分运算及目标提取实现,包含testbench和MATLAB辅助验证程序
基于FPGA的图像差分运算及目标提取实现,包含testbench和MATLAB辅助验证程序
|
20天前
|
算法 数据挖掘
R语言——AVOCADO“(异常植被变化检测)算法(1990-2015数据分析)监测森林干扰和再生(含GEE影像下载代码)
R语言——AVOCADO“(异常植被变化检测)算法(1990-2015数据分析)监测森林干扰和再生(含GEE影像下载代码)
22 1
|
9天前
|
算法
MATLAB | 插值算法 | 二维interp2插值法 | 附数据和出图代码 | 直接上手
MATLAB | 插值算法 | 二维interp2插值法 | 附数据和出图代码 | 直接上手
15 0
|
9天前
|
算法
MATLAB | 插值算法 | 二维griddata插值法 | 附数据和出图代码 | 直接上手
MATLAB | 插值算法 | 二维griddata插值法 | 附数据和出图代码 | 直接上手
19 0
|
22天前
|
人工智能 移动开发 算法
算法基础:前缀和与差分
算法基础:前缀和与差分
35 1
算法基础:前缀和与差分
|
1月前
|
算法 测试技术 C#
【滑动窗口】【差分数组】C++算法:K 连续位的最小翻转次数
【滑动窗口】【差分数组】C++算法:K 连续位的最小翻转次数
|
2月前
|
存储 算法
代码汇总【数据结构与算法】【精致版】
代码汇总【数据结构与算法】【精致版】
62 1
|
2月前
|
机器学习/深度学习 算法 TensorFlow
【Python机器学习】神经网络中误差反向传播(BP)算法详解及代码示例(图文解释 附源码)
【Python机器学习】神经网络中误差反向传播(BP)算法详解及代码示例(图文解释 附源码)
19 0
|
2月前
|
设计模式 算法 Java
二十三种设计模式全面解析-当你的代码需要多种算法时,策略模式是你的救星!
二十三种设计模式全面解析-当你的代码需要多种算法时,策略模式是你的救星!

相关产品