BASE理论这次彻底搞清楚原理

简介: 《分布式》系列

简介

BASE 是 Basically Available(基本可用) 、Soft-state(软状态) 和 Eventually Consistent(最终一致性) 三个短语的缩写。BASE 理论是对 CAP 中一致性 C 和可用性 A 权衡的结果,其来源于对大规模互联网系统分布式实践的总结,是基于 CAP 定理逐步演化而来的,它大大降低了我们对系统的要求


BASE 理论的核心思想

即使无法做到强一致性,但每个应用都可以根据自身业务特点,采用适当的方式来使系统达到最终一致性。

也就是牺牲数据的一致性来满足系统的高可用性,系统中一部分数据不可用或者不一致时,仍需要保持系统整体“主要可用”。

BASE 理论本质上是对 CAP 的延伸和补充,更具体地说,是对 CAP 中 AP 方案的一个补充。

为什么这样说呢?

CAP 理论这节我们也说过了:

如果系统没有发生“分区”的话,节点间的网络连接通信正常的话,也就不存在 P 了。这个时候,我们就可以同时保证 C 和 A 了。因此,如果系统发生“分区”,我们要考虑选择 CP 还是 AP。如果系统没有发生“分区”的话,我们要思考如何保证 CA 。

因此,AP 方案只是在系统发生分区的时候放弃一致性,而不是永远放弃一致性。在分区故障恢复后,系统应该达到最终一致性。这一点其实就是 BASE 理论延伸的地方。

BASE 理论三要素


基本可用

基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性。但是,这绝不等价于系统不可用。

什么叫允许损失部分可用性呢?

  • 响应时间上的损失: 正常情况下,处理用户请求需要 0.5s 返回结果,但是由于系统出现故障,处理用户请求的时间变为 3 s。
  • 系统功能上的损失:正常情况下,用户可以使用系统的全部功能,但是由于系统访问量突然剧增,系统的部分非核心功能无法使用。


软状态

软状态指允许系统中的数据存在中间状态(CAP 理论中的数据不一致),并认为该中间状态的存在不会影响系统的整体可用性,即允许系统在不同节点的数据副本之间进行数据同步的过程存在延时。


最终一致性

最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的强一致性。

分布式一致性的 3 种级别:

  1. 强一致性 :系统写入了什么,读出来的就是什么。
  2. 弱一致性 :不一定可以读取到最新写入的值,也不保证多少时间之后读取到的数据是最新的,只是会尽量保证某个时刻达到数据一致的状态。
  3. 最终一致性 :弱一致性的升级版,系统会保证在一定时间内达到数据一致的状态。

业界比较推崇是最终一致性级别,但是某些对数据一致要求十分严格的场景比如银行转账还是要保证强一致性。

那实现最终一致性的具体方式是什么呢? 《分布式协议与算法实战》open in new window 中是这样介绍:

  • 读时修复 : 在读取数据时,检测数据的不一致,进行修复。比如 Cassandra 的 Read Repair 实现,具体来说,在向 Cassandra 系统查询数据的时候,如果检测到不同节点 的副本数据不一致,系统就自动修复数据。
  • 写时修复 : 在写入数据,检测数据的不一致时,进行修复。比如 Cassandra 的 Hinted Handoff 实现。具体来说,Cassandra 集群的节点之间远程写数据的时候,如果写失败 就将数据缓存下来,然后定时重传,修复数据的不一致性。
  • 异步修复 : 这个是最常用的方式,通过定时对账检测副本数据的一致性,并修复。

比较推荐 写时修复,这种方式对性能消耗比较低。


总结

ACID 是数据库事务完整性的理论,CAP 是分布式系统设计理论,BASE 是 CAP 理论中 AP 方案的延伸。

相关文章
|
8月前
简述CAP理论,BASE理论
简述CAP理论,BASE理论
65 0
CAP 理论 —最通俗易懂的解释
CAP 理论是分布式系统的一个基础理论,它描述了任何一个分布式系统最多只能满足以下三个特性中的两个: 1:一致性(Consistency) 2:可用性(Availability) 3:分区容错性(Partition tolerance) CAP 理论听起来十分抽象,本文尝试以生活中的例子并用通俗易懂的语言来解释 CAP 理论的含义。
2378 0
|
4月前
|
存储 NoSQL 关系型数据库
什么是 CAP 理论和 BASE 理论,看这一篇就够了
什么是 CAP 理论和 BASE 理论,看这一篇就够了
91 12
|
5月前
八问八答搞懂Transformer内部运作原理
【8月更文挑战第28天】这篇名为“Transformer Layers as Painters”的论文通过一系列实验,深入探讨了Transformer模型内部不同层级的信息处理机制。研究发现,中间层级在表示空间上具有一致性,但功能各异,且模型对层级的去除或重排表现出较强的鲁棒性。此外,论文还分析了层级顺序、并行执行及循环等因素对模型性能的影响,揭示了不同任务下层级顺序的重要性差异,并指出随机化层级顺序和循环并行化对性能损害最小。
57 5
|
8月前
|
Nacos
分布式理论:CAP理论 BASE理论
分布式理论:CAP理论 BASE理论
53 2
|
编解码 JavaScript
解释基本的3D理论
本文介绍了所有基本理论,这些理论在开始使用 3D 时很有用。
141 0
解释基本的3D理论
|
算法 C++
【每日算法Day 99】你们可能不知道只用20万赢到578万是什么概念
【每日算法Day 99】你们可能不知道只用20万赢到578万是什么概念
121 0
|
存储 关系型数据库 MySQL
【JavaP6大纲】分布式事务篇:BASE理论
【JavaP6大纲】分布式事务篇:BASE理论
116 0
|
编解码 缓存 NoSQL
7点 讲明白地图切片的概念与原理
7点 讲明白地图切片的概念与原理
526 0
|
消息中间件 存储 canal
理论先行-溯本清源解吃透BASE理论
理论先行-溯本清源解吃透BASE理论
267 0

热门文章

最新文章