Linux内核中SPI总线驱动分析

本文涉及的产品
数据传输服务 DTS,数据迁移 small 3个月
推荐场景:
MySQL数据库上云
数据传输服务 DTS,数据同步 small 3个月
推荐场景:
数据库上云
数据传输服务 DTS,数据同步 1个月
简介:

本文主要有两个大的模块:一个是SPI总线驱动的分析 (研究了具体实现的过程);

另一个是SPI总线驱动的编写(不用研究具体的实现过程)。 

1 SPI概述

      SPI是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口,是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便。
      SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要4根线,事实上3根也可以。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCLK(时钟),CS(片选)。
      MOSI(SDO):主器件数据输出,从器件数据输入。
      MISO(SDI):主器件数据输入,从器件数据输出。
      SCLK :时钟信号,由主器件产生。
      CS:从器件使能信号,由主器件控制。
      其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效,这就允许在同一总线上连接多个SPI设备成为可能。需要注意的是,在具体的应用中,当一条SPI总线上连接有多个设备时,SPI本身的CS有可能被其他的GPIO脚代替,即每个设备的CS脚被连接到处理器端不同的GPIO,通过操作不同的GPIO口来控制具体的需要操作的SPI设备,减少各个SPI设备间的干扰。
      SPI是串行通讯协议,也就是说数据是一位一位从MSB或者LSB开始传输的,这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,MISO、MOSI则基于此脉冲完成数据传输。 SPI支持4-32bits的串行数据传输,支持MSB和LSB,每次数据传输时当从设备的大小端发生变化时需要重新设置SPI Master的大小端。

2 Linux SPI驱动总体架构

     在2.6的linux内核中,SPI的驱动架构可以分为如下三个层次:SPI 核心层、SPI控制器驱动层和SPI设备驱动层。

     Linux 中SPI驱动代码位于drivers/spi目录。

2.1 SPI核心层

     SPI核心层是Linux的SPI核心部分,提供了核心数据结构的定义、SPI控制器驱动和设备驱动的注册、注销管理等API。其为硬件平台无关层,向下屏蔽了物理总线控制器的差异,定义了统一的访问策略和接口;其向上提供了统一的接口,以便SPI设备驱动通过总线控制器进行数据收发。

      Linux中,SPI核心层的代码位于driver/spi/ spi.c。由于该层是平台无关层,本文将不再叙述,有兴趣可以查阅相关资料。

2.2 SPI控制器驱动层

     SPI控制器驱动层,每种处理器平台都有自己的控制器驱动,属于平台移植相关层。它的职责是为系统中每条SPI总线实现相应的读写方法。在物理上,每个SPI控制器可以连接若干个SPI从设备。

      在系统开机时,SPI控制器驱动被首先装载。一个控制器驱动用于支持一条特定的SPI总线的读写。一个控制器驱动可以用数据结构struct spi_master来描述。

在include/liunx/spi/spi.h文件中,在数据结构struct spi_master定义如下: 
struct spi_master {  
    struct device   dev;  
    s16         bus_num;  
    u16         num_chipselect;  
    int         (*setup)(struct spi_device *spi);  
    int         (*transfer)(struct spi_device *spi, struct spi_message *mesg);  
    void        (*cleanup)(struct spi_device *spi);  
};  

     bus_num为该控制器对应的SPI总线号。
      num_chipselect 控制器支持的片选数量,即能支持多少个spi设备 
     setup函数是设置SPI总线的模式,时钟等的初始化函数, 针对设备设置SPI的工作时钟及数据传输模式等。spi_add_device函数中调用 
     transfer函数是实现SPI总线读写方法的函数。实现数据的双向传输,可能会睡眠

    cleanup注销时候调用

2.3 SPI设备驱动层

     SPI设备驱动层为用户接口层,其为用户提供了通过SPI总线访问具体设备的接口。
      SPI设备驱动层可以用两个模块来描述,structspi_driver和struct spi_device。
      相关的数据结构如下:

struct spi_driver {  
    int         (*probe)(struct spi_device *spi);  
    int         (*remove)(struct spi_device *spi);  
    void            (*shutdown)(struct spi_device *spi);  
    int         (*suspend)(struct spi_device *spi, pm_message_t mesg);  
    int         (*resume)(struct spi_device *spi);  
    struct device_driver    driver;  
}; 

  Driver是为device服务的,spi_driver注册时会扫描SPI bus上的设备,进行驱动和设备的绑定,probe函数用于驱动和设备匹配时被调用。从上面的结构体注释中我们可以知道SPI的通信是通过消息队列机制,而不是像I2C那样通过与从设备进行对话的方式。

struct spi_device {  
    struct device       dev;  
    struct spi_master   *master;  
    u32         max_speed_hz;  
    u8          chip_select;  
    u8          mode;    
    u8          bits_per_word;  
    int         irq;  
    void            *controller_state;  
    void            *controller_data;  
    char            modalias[32];   
}; 
 
        .modalias   = "m25p10",
        .mode   =SPI_MODE_0,   //CPOL=0, CPHA=0 此处选择具体数据传输模式
        .max_speed_hz    = 10000000, //最大的spi时钟频率
        /* Connected to SPI-0 as 1st Slave */
        .bus_num    = 0,   //设备连接在spi控制器0上
        .chip_select    = 0, //片选线号,在S5PC100的控制器驱动中没有使用它作为片选的依据,而是选择了下文controller_data里的方法。
       .controller_data = &smdk_spi0_csi[0],  
通常来说spi_device对应着SPI总线上某个特定的slave。并且spi_device封装了一个spi_master结构体。spi_device结构体包含了私有的特定的slave设备特性,包括它最大的频率,片选那个,输入输出模式等等

3 OMAP3630 SPI控制器

     OMAP3630上SPI是一个主/从的同步串行总线,这边有4个独立的SPI模块(SPI1,SPI2,SPI3,SPI4),各个模块之间的区别在于SPI1支持多达4个SPI设备,SPI2和SPI3支持2个SPI设备,而SPI4只支持1个SPI设备。

SPI控制器具有以下特征:

    1.可编程的串行时钟,包括频率,相位,极性。

    2.支持4到32位数据传输

    3.支持4通道或者单通道的从模式

    4.支持主的多通道模式

        4.1全双工/半双工

        4.2只发送/只接收/收发都支持模式

        4.3灵活的I/O端口控制

        4.4每个通道都支持DMA读写

    5.支持多个中断源的中断时间

    6.支持wake-up的电源管理

    7.内置64字节的FIFO

4 spi_device以下一系列的操作是在platform板文件中完成!

spi_device的板信息用spi_board_info结构体来描述:
struct spi_board_info {
charmodalias[SPI_NAME_SIZE];
const void*platform_data;
void*controller_data;
intirq;
u32max_speed_hz;
u16bus_num;
u16chip_select;
u8mode;
};
 
这个结构体记录了SPI外设使用的主机控制器序号、片选信号、数据比特率、SPI传输方式等构建的操作是以下的两个步骤:
1.spi_device就构建并注册 
static struct spi_board_info s3c_spi_devs[] __initdata = {
{
.modalias = "m25p10a",
.mode = SPI_MODE_0,
.max_speed_hz = 1000000,
.bus_num = 0,
.chip_select = 0,
.controller_data = &smdk_spi0_csi[SMDK_MMCSPI_CS],
},
};

2.
而这个info在init函数调用的时候会初始化:
spi_register_board_info(s3c_spi_devs,ARRAY_SIZE(s3c_spi_devs));
 

在板文件中添加spi_board_info,并在板文件的init函数中调用

spi_register_board_info(s3c_spi_devs,ARRAY_SIZE(s3c_spi_devs));//注册spi_board_info。这个代码会把spi_board_info注册到链表board_list上。spi_device封装了一个spi_master结构体,事实上spi_master的注册会在spi_register_board_info之后,spi_master注册的过程中会调用scan_boardinfo扫描board_list,找到挂接在它上面的spi设备,然后创建并注册spi_device。

 

至此spi_device就构建并注册完成了!!!!!!!!!!!!!

5 spi_driver的构建与注册

driver有几个重要的结构体:spi_driver、spi_transfer、spi_message

driver有几个重要的函数    spi_message_initspi_message_add_tailspi_sync

(1) spi_driver的构建
static struct spi_driver   m25p80_driver = { 
.driver = {
        .name   ="m25p80",
        .bus    =&spi_bus_type,
        .owner  = THIS_MODULE,
    },
    .probe  = m25p_probe,
    .remove =__devexit_p(m25p_remove),
};
(2)spi_driver的注册 
spi_register_driver(&m25p80_driver);//在有匹配的spi_device时,会调用m25p_probe

(3)实现probe操作
probe里完成了spi_transfer、spi_message的构建;
spi_message_init、spi_message_add_tail、spi_sync、spi_write_then_read函数的调用。

spi_transfer(里面集成了数据buf空间地址等信息)
spi_message(是spi_transfer的集合)的构建)
spi_message_init(初始化spi_message)
spi_message_add_tail(将新的spi_transfer添加到spi_message队列尾部)
spi_sync函数的调用(调用spi_master发送spi_message)
 spi_write_then_read(先写后读)

例如:
 
struct spi_transfer st={
 ………… 
};//填充spi_transfer  
struct spi_message meg;//定义message
spi_init_message(&meg);//初始化meg
spi_message_add_tail(&st,&meg);//将st放在message队列尾部
Spi_sync(spi_device,&meg);//将message与spi_device关联,发送meg
 
static int m25p10a_read( struct m25p10a *flash, loff_t from,   
        size_t len, char *buf )  
{  
    int r_count = 0, i;  
    struct spi_transfer st[2];  
    struct spi_message  msg;  
      
    spi_message_init( &msg );  
    memset( st, 0, sizeof(st) );  
  
    flash->cmd[0] = CMD_READ_BYTES;  
    flash->cmd[1] = from >> 16;  
    flash->cmd[2] = from >> 8;  
    flash->cmd[3] = from;  
  
    st[ 0 ].tx_buf = flash->cmd;  
    st[ 0 ].len = CMD_SZ;  
    spi_message_add_tail( &st[0], &msg );  
  
    st[ 1 ].rx_buf = buf;  
    st[ 1 ].len = len;  
    spi_message_add_tail( &st[1], &msg );  
  
    mutex_lock( &flash->lock );  
      
    /* Wait until finished previous write command. */  
    if (wait_till_ready(flash)) {  
        mutex_unlock( &flash->lock );  
        return -1;  
    }  
  
    spi_sync( flash->spi, &msg );  
    r_count = msg.actual_length - CMD_SZ;  
    printk( "in (%s): read %d bytes\n", __func__, r_count );  
    for( i = 0; i < r_count; i++ ) {  
        printk( "0x%02x\n", buf[ i ] );  
    }  
  
    mutex_unlock( &flash->lock );  

    return 0;  
}  

static int m25p10a_write( struct m25p10a *flash, loff_t to,   
        size_t len, const char *buf )  
{  
    int w_count = 0, i, page_offset;
    struct spi_transfer st[2]; 
    struct spi_message  msg;  
    write_enable( flash );  //写使能  
        spi_message_init( &msg );  
    memset( st, 0, sizeof(st) );  
  
    flash->cmd[0] = CMD_PAGE_PROGRAM;  
    flash->cmd[1] = to >> 16;  
    flash->cmd[2] = to >> 8;  
    flash->cmd[3] = to;  
  
    st[ 0 ].tx_buf = flash->cmd;  
    st[ 0 ].len = CMD_SZ;  
  //填充spi_transfer,将transfer放在队列后面
    spi_message_add_tail( &st[0], &msg );  
    st[ 1 ].tx_buf = buf;  
    st[ 1 ].len = len;  
    spi_message_add_tail( &st[1], &msg );  
        spi_sync( flash->spi, &msg );   调用spi_master发送spi_message
    
    return 0;  
} 
 
 
static int m25p10a_probe(struct spi_device *spi)   
{   
    int ret = 0;  
    struct m25p10a  *flash;  
    char buf[ 256 ];  
    flash = kzalloc( sizeof(struct m25p10a), GFP_KERNEL );  
    flash->spi = spi;  
    /* save flash as driver's private data */  
    spi_set_drvdata( spi, flash );    
    memset( buf, 0x7, 256 );  
    m25p10a_write( flash, 0, 20, buf); //0地址写入20个7  
    memset( buf, 0, 256 );  
    m25p10a_read( flash, 0, 25, buf ); //0地址读出25个数  
    return 0;   
}   
 
到目前为止,完成了SPI的驱动和应用。








相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
Sqoop 企业级大数据迁移方案实战
Sqoop是一个用于在Hadoop和关系数据库服务器之间传输数据的工具。它用于从关系数据库(如MySQL,Oracle)导入数据到Hadoop HDFS,并从Hadoop文件系统导出到关系数据库。 本课程主要讲解了Sqoop的设计思想及原理、部署安装及配置、详细具体的使用方法技巧与实操案例、企业级任务管理等。结合日常工作实践,培养解决实际问题的能力。本课程由黑马程序员提供。
目录
相关文章
|
1天前
|
Linux 数据库
Linux内核中的锁机制:保障并发操作的数据一致性####
【10月更文挑战第29天】 在多线程编程中,确保数据一致性和防止竞争条件是至关重要的。本文将深入探讨Linux操作系统中实现的几种关键锁机制,包括自旋锁、互斥锁和读写锁等。通过分析这些锁的设计原理和使用场景,帮助读者理解如何在实际应用中选择合适的锁机制以优化系统性能和稳定性。 ####
14 6
|
2天前
|
机器学习/深度学习 负载均衡 算法
深入探索Linux内核调度机制的优化策略###
本文旨在为读者揭开Linux操作系统中至关重要的一环——CPU调度机制的神秘面纱。通过深入浅出地解析其工作原理,并探讨一系列创新优化策略,本文不仅增强了技术爱好者的理论知识,更为系统管理员和软件开发者提供了实用的性能调优指南,旨在促进系统的高效运行与资源利用最大化。 ###
|
4天前
|
算法 Linux 开发者
深入探究Linux内核中的内存管理机制
本文旨在对Linux操作系统的内存管理机制进行深入分析,探讨其如何通过高效的内存分配和回收策略来优化系统性能。文章将详细介绍Linux内核中内存管理的关键技术点,包括物理内存与虚拟内存的映射、页面置换算法、以及内存碎片的处理方法等。通过对这些技术点的解析,本文旨在为读者提供一个清晰的Linux内存管理框架,帮助理解其在现代计算环境中的重要性和应用。
|
1天前
|
监控 网络协议 算法
Linux内核优化:提升系统性能与稳定性的策略####
本文深入探讨了Linux操作系统内核的优化策略,旨在通过一系列技术手段和最佳实践,显著提升系统的性能、响应速度及稳定性。文章首先概述了Linux内核的核心组件及其在系统中的作用,随后详细阐述了内存管理、进程调度、文件系统优化、网络栈调整及并发控制等关键领域的优化方法。通过实际案例分析,展示了这些优化措施如何有效减少延迟、提高吞吐量,并增强系统的整体健壮性。最终,文章强调了持续监控、定期更新及合理配置对于维持Linux系统长期高效运行的重要性。 ####
|
3天前
|
缓存 网络协议 Linux
Linux操作系统内核
Linux操作系统内核 1、进程管理: 进程调度 进程创建与销毁 进程间通信 2、内存管理: 内存分配与回收 虚拟内存管理 缓存管理 3、驱动管理: 设备驱动程序接口 硬件抽象层 中断处理 4、文件和网络管理: 文件系统管理 网络协议栈 网络安全及防火墙管理
20 4
|
20小时前
|
缓存 算法 Linux
深入理解Linux内核调度器:公平性与性能的平衡####
真知灼见 本文将带你深入了解Linux操作系统的核心组件之一——完全公平调度器(CFS),通过剖析其设计原理、工作机制以及在实际系统中的应用效果,揭示它是如何在众多进程间实现资源分配的公平性与高效性的。不同于传统的摘要概述,本文旨在通过直观且富有洞察力的视角,让读者仿佛亲身体验到CFS在复杂系统环境中游刃有余地进行任务调度的过程。 ####
16 6
|
4天前
|
人工智能 算法 大数据
Linux内核中的调度算法演变:从O(1)到CFS的优化之旅###
本文深入探讨了Linux操作系统内核中进程调度算法的发展历程,聚焦于O(1)调度器向完全公平调度器(CFS)的转变。不同于传统摘要对研究背景、方法、结果和结论的概述,本文创新性地采用“技术演进时间线”的形式,简明扼要地勾勒出这一转变背后的关键技术里程碑,旨在为读者提供一个清晰的历史脉络,引领其深入了解Linux调度机制的革新之路。 ###
|
6天前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
30 4
|
7天前
|
缓存 负载均衡 算法
Linux内核中的进程调度算法解析####
本文深入探讨了Linux操作系统核心组件之一——进程调度器,着重分析了其采用的CFS(完全公平调度器)算法。不同于传统摘要对研究背景、方法、结果和结论的概述,本文摘要将直接揭示CFS算法的核心优势及其在现代多核处理器环境下如何实现高效、公平的资源分配,同时简要提及该算法如何优化系统响应时间和吞吐量,为读者快速构建对Linux进程调度机制的认知框架。 ####
|
7天前
|
缓存 算法 Linux
Linux内核中的内存管理机制深度剖析####
【10月更文挑战第28天】 本文深入探讨了Linux操作系统的心脏——内核,聚焦其内存管理机制的奥秘。不同于传统摘要的概述方式,本文将以一次虚拟的内存分配请求为引子,逐步揭开Linux如何高效、安全地管理着从微小嵌入式设备到庞大数据中心数以千计程序的内存需求。通过这段旅程,读者将直观感受到Linux内存管理的精妙设计与强大能力,以及它是如何在复杂多变的环境中保持系统稳定与性能优化的。 ####
14 0