阿里云ecs使用体验

简介: 整了台服务器部署项目上线

我是一名软件工程专业的大三学生,最大的特质就是执着,只要是我所选择的事情,我所选择的道路,我都会非常坚定的走下去。我喜欢挑战自我,喜欢在强手之中找到自己的位置,如果失败我会得到更大的动力,争取更大的成功。

刚买了服务器,建议先通过ssh连接,市面上有很多产品,自己可以谷歌百度一下,本人用的是Xshell家族,首先确认下安全组里面的22端口放开(已默认打开)IP为公网IP,用户名为root,密码为你设置的密码,如果忘记了,找到管理控制台的实例菜单下

20181012105614349.png

如果发现网站打不开,首先应该检查下阿里云的安全组端口是否开放,不然费时费力,最后才想起,基本软件的安装可以自行百度一下都有。在云服务器ecs使用中除了端口开放之外,还有一个问题就是邮件发送问题,阿里云服务器默认关闭25的邮件端口,如需要邮件发送功能需改成465端口才可以。

总而言之,通过“高校学生在家实践”计划,让我可以体验到阿里云服务器ecs的方方面面,确实服务器的体验上是挺好的,在这个过程中,为了部署项目,到处查阅资料,感受颇深,不过也学习到了很多的东西,有了经验,以后就能在运维上更加游刃有余了。

相关实践学习
2分钟自动化部署人生模拟器
本场景将带你借助云效流水线Flow实现人生模拟器小游戏的自动化部署
7天玩转云服务器
云服务器ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,可降低 IT 成本,提升运维效率。本课程手把手带你了解ECS、掌握基本操作、动手实操快照管理、镜像管理等。了解产品详情: https://www.aliyun.com/product/ecs
相关文章
|
4月前
|
弹性计算
阿里云ECS使用体验
在申请高校学生免费体验阿里云ECS云服务器后的一些使用体验和感受。
|
弹性计算 运维 安全
阿里云ecs使用体验
整了台服务器部署项目上线
阿里云ecs使用体验
|
弹性计算 分布式计算 Ubuntu
阿里云ECS使用体验简笔
通过“飞天”计划使用了阿里云ECS,体验后的一些感受。
阿里云ECS使用体验简笔
|
16天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
阿里云与企业共筑容器供应链安全
171339 13
|
19天前
|
供应链 监控 安全
对话|企业如何构建更完善的容器供应链安全防护体系
随着云计算和DevOps的兴起,容器技术和自动化在软件开发中扮演着愈发重要的角色,但也带来了新的安全挑战。阿里云针对这些挑战,组织了一场关于云上安全的深度访谈,邀请了内部专家穆寰、匡大虎和黄竹刚,深入探讨了容器安全与软件供应链安全的关系,分析了当前的安全隐患及应对策略,并介绍了阿里云提供的安全解决方案,包括容器镜像服务ACR、容器服务ACK、网格服务ASM等,旨在帮助企业构建涵盖整个软件开发生命周期的安全防护体系。通过加强基础设施安全性、技术创新以及倡导协同安全理念,阿里云致力于与客户共同建设更加安全可靠的软件供应链环境。
150296 32
|
27天前
|
弹性计算 人工智能 安全
对话 | ECS如何构筑企业上云的第一道安全防线
随着中小企业加速上云,数据泄露、网络攻击等安全威胁日益严重。阿里云推出深度访谈栏目,汇聚产品技术专家,探讨云上安全问题及应对策略。首期节目聚焦ECS安全性,提出三道防线:数据安全、网络安全和身份认证与权限管理,确保用户在云端的数据主权和业务稳定。此外,阿里云还推出了“ECS 99套餐”,以高性价比提供全面的安全保障,帮助中小企业安全上云。
201962 15
对话 | ECS如何构筑企业上云的第一道安全防线
|
4天前
|
机器学习/深度学习 自然语言处理 PyTorch
深入剖析Transformer架构中的多头注意力机制
多头注意力机制(Multi-Head Attention)是Transformer模型中的核心组件,通过并行运行多个独立的注意力机制,捕捉输入序列中不同子空间的语义关联。每个“头”独立处理Query、Key和Value矩阵,经过缩放点积注意力运算后,所有头的输出被拼接并通过线性层融合,最终生成更全面的表示。多头注意力不仅增强了模型对复杂依赖关系的理解,还在自然语言处理任务如机器翻译和阅读理解中表现出色。通过多头自注意力机制,模型在同一序列内部进行多角度的注意力计算,进一步提升了表达能力和泛化性能。
|
9天前
|
存储 人工智能 安全
对话|无影如何助力企业构建办公安全防护体系
阿里云无影助力企业构建办公安全防护体系
1256 10
|
11天前
|
机器学习/深度学习 自然语言处理 搜索推荐
自注意力机制全解析:从原理到计算细节,一文尽览!
自注意力机制(Self-Attention)最早可追溯至20世纪70年代的神经网络研究,但直到2017年Google Brain团队提出Transformer架构后才广泛应用于深度学习。它通过计算序列内部元素间的相关性,捕捉复杂依赖关系,并支持并行化训练,显著提升了处理长文本和序列数据的能力。相比传统的RNN、LSTM和GRU,自注意力机制在自然语言处理(NLP)、计算机视觉、语音识别及推荐系统等领域展现出卓越性能。其核心步骤包括生成查询(Q)、键(K)和值(V)向量,计算缩放点积注意力得分,应用Softmax归一化,以及加权求和生成输出。自注意力机制提高了模型的表达能力,带来了更精准的服务。
|
9天前
|
人工智能 自然语言处理 程序员
通义灵码2.0全新升级,AI程序员全面开放使用
通义灵码2.0来了,成为全球首个同时上线JetBrains和VSCode的AI 程序员产品!立即下载更新最新插件使用。
1371 24